
Bilkent University

Department of Computer Engineering

Senior Design Project

T2431

Smart Vector Query

Analysis and Requirement Report

Mehshid Atiq 22101335

Muhammad Rowaha 22101023

Ghulam Ahmed 22101001

Yassin Younis 22101310

Zahaab Khawaja 22101038
Supervisor: Uğur Doğrusöz

Innovation Expert: John Yuzdepski

16.12.2024

This report is submitted to the Department of Computer Engineering of Bilkent University in partial fulfilment of the

requirements of the Senior Design Project course CS491/2.



Table of Contents

1. Introduction 3

2. Proposed System 3

2.1. Overview 3

2.2. Functional Requirements 4

2.3. Non-functional Requirements 5

2.4. Pseudo Requirements 7

2.5. System Models 7

2.5.1. Scenarios 7

2.5.2. Use-Case Model 9

2.5.3. Object and Class Model 10

2.5.4. Dynamic Models 11

2.5.5. User Interface 13

3. Other Analysis Elements 17

3.1. Consideration of Various Factors in Engineering Design 17

3.1.2. Constraints 17

3.1.3. Standards 18

3.2. Risks and Alternatives 20

3.3. Project Plan 20

3.4. Ensuring Proper Teamwork 23

3.5. Ethics and Professional Responsibilities 23

3.6. Planning for New Knowledge and Learning Strategies 23

4. Glossary 24

5. References 27

2



Analysis and Requirement Report
SVQ: Smart Vector Query

1. Introduction

In today's fast-paced regulatory landscape, efficiently navigating complex documents can be a

daunting challenge for professionals across various industries. To address this need, Svq.ai is

being developed as a cutting-edge platform that leverages state-of-the-art

Retrieval-Augmented Generation (RAG) technology, combined with advanced large language

models (LLMs) and modern vector databases. The platform allows users to upload a variety of

documents, from regulatory texts to codebases and textbooks, which are then processed

semantically for enhanced retrieval capabilities. By employing sophisticated chunking and

embedding processes, Svq.ai ensures that users can seamlessly query large files through an

intuitive chatbot interface, receiving precise and context-aware responses. The system is

designed not only for efficiency and accuracy but also with a strong focus on user experience,

data privacy, and scalability, making it an invaluable tool for professionals seeking to streamline

their interactions with regulatory documents.

2. Proposed System

2.1. Overview

Under the hood, svq.ai operates using state of the art large language model (LLM) technology

alongside modern vector databases and embedding algorithms in order to store and retrieve

information based on users’ queries. Users start by uploading their own documents as the data

source; these documents can be anything ranging from regulatory documents, codebases, or

even textbooks. They are processed based on semantics and stored in a database. Users then

ask questions through a chatbot interface, with their query being used to semantically search

the database for the most relevant and precise answers.

One of the key aspects is the chunking and embedding process of the uploaded pdf, for

instance. Since our aim is to enable the users to query large files, the system architecture of

Svq.ai naturally feels distributed; a master node orchestrates chunking and embedding of large

files. Based on configurations, for example, a worker node can be spinned up for every 10MBs

of the input file. A task queue can be used for persistent asynchronous execution. Generated

embeddings can then be returned to the master node. This way, worker nodes can be scaled

based on the input file size. Moreover, since users will be uploading their documents to the

cloud, data privacy is also a major concern. We aim to achieve this by storing hashed files

instead of original files. Each user will be assigned a symmetric key for each datasource. If

required, the file can be decrypted for the user and annotated accordingly based on query

results. Cryptographic hashing of large files can be a slow process, and hence will be off

loaded to another node in the system. For improving availability, file/block replication can also

be implemented (cloud services e.g. Amazom S3 support data replication out of the box). To

scale inferences/queries to the vector databases, serverless functions can be used; queries will

be short-lived and running a dedicated service constantly maintaining a connection-pool to the

database and/or third-party resources (e.g. OpenAI API) can be costly. Using serverless

functions also suits this need because users can query back-to-back and function execution

environments do not shut down immediately–consequent requests will have ‘warm’ startups for

3



a short period of time. Lastly, The system will have a single point of entry for all users; this node

will be responsible for general user management and user authentication, and orchestration of

processes using webhooks.

2.2. Functional Requirements

The regulatory document querying platform, svq.ai, aims to simplify interaction with regulatory

documents through an advanced RAG-powered system. Here are the comprehensive

functional requirements necessary for successful implementation and deployment.

→ User Interface and Navigation

The system requires an intuitive web interface that prioritizes user experience. The primary

navigation structure must include clearly defined sections for Home, Reports, and Contact

pages, with a persistent navigation bar across all pages. The interface necessitates prominent

call-to-action elements, including "Try it now" and "Get started for free" buttons to maximize

conversions. The chatbot interface must be seamlessly integrated into the main application,

providing users with a natural conversation flow for document queries. The design must

maintain consistent branding elements and styling throughout the platform to ensure a

cohesive user experience.

→ Document Processing and Search Capabilities

At the core of the system lies the Retrieval Augmented Generation (RAG) technology

implementation. This technology must process regulatory documents with high accuracy while

reducing hallucination. The system must accept natural language queries from users and

process them to provide accurate, contextual responses without hallucinations. The search

functionality requires advanced filtering capabilities that allow users to refine their searches

based on multiple parameters. The system must maintain an efficient indexing system for all

uploaded documents, ensuring quick retrieval and processing of information.

→ User Management System

The platform requires a good user management system that supports both free-tier and

premium access levels. User authentication and authorization mechanisms must be

implemented with industry-standard security protocols. The system must track and maintain

user sessions securely while storing user preferences and search history. Profile management

capabilities should allow users to customize their experience and manage their document

collections efficiently.

→ Regulatory Document Management System

The document management system must support various document formats commonly used

for regulatory documentation. Version control functionality is essential to track document

changes and updates over time. The system requires batch processing capabilities to handle

multiple documents simultaneously while maintaining processing efficiency. Document security

measures must be implemented to ensure the confidentiality and integrity of uploaded

materials.

→ Search Results and Response Generation

4



The response generation system must provide context-aware answers derived directly from the

source documents. Responses should include relevant citations and references to source

materials. The system must support the export of search results and findings in multiple

formats suitable for reporting and analysis. An audit trail system must track all queries and

responses for compliance and quality assurance purposes.

→ Performance and Integration Requirements

System performance requirements dictate response times under three seconds for standard

queries under normal load conditions. The platform must handle multiple concurrent users

effectively without degradation in performance. Integration capabilities must include API access

for enterprise clients, allowing seamless incorporation into existing workflows. The system must

maintain compatibility with major web browsers and provide responsive design for various

device types.

→ Security and Compliance

Security requirements encompass comprehensive data protection measures, including

encryption for data in transit and at rest. The system must comply with relevant data protection

regulations and implement appropriate data retention and deletion policies. Audit logging

functionality must track system interactions for security monitoring and compliance purposes.

Clear terms of service and legal disclaimers must be integrated into the platform to ensure legal

compliance.

→ Reporting and Analytics

The reporting system must generate comprehensive analytics on document usage, query

patterns, and system performance. Reports must be available in multiple formats and support

custom report generation based on user requirements. Analytics functionality should provide

insights into user behavior and system utilization patterns to support continuous improvement.

2.3. Non-functional Requirements

→ Usability

To guarantee that users can easily find and use functions, the interface must have clear and

simple navigation. With just three clicks from any page, all of the main features should be

available, reducing the amount of work needed to complete tasks. To enhance user experience

and prevent misunderstanding, all pages must have a uniform style and design language.

Interactivity and simplicity should be balanced in the interface so that users may finish

challenging activities without feeling overburdened. It should also put aesthetics first, offering a

visually pleasing layout that is enjoyable to use. All non-trivial UI elements should incorporate

interactive tooltips or informational prompts to improve usability even more. This will help users

navigate the system efficiently and without the need for extra assistance.

5



→ Reliability

The system must implement robust data security measures to ensure that all uploaded

documents are protected from unauthorized access. Data confidentiality must be guaranteed

through end-to-end encryption, with all data stored in an encrypted format using

industry-standard algorithms (e.g., AES-256). During transmission, TLS (Transport Layer

Security) protocols must be employed to safeguard data against interception or tampering.

Access control mechanisms, including role-based access control (RBAC) and multi-factor

authentication (MFA), must be enforced to limit access to authorized users only. Additionally,

zero-knowledge architecture can be utilized to ensure that data is not perceivable even by the

system administrators or service providers. Regular penetration testing should be conducted to

identify and mitigate potential vulnerabilities, ensuring data confidentiality at all times. The

system must ensure a minimum uptime of 95%. Robust error-handling mechanisms must

enable recovery from failures without data loss. Automated data backups must occur every 7

days, with redundancies in place to safeguard critical information. Rigorous testing, including

stress testing, is required to ensure stability and reliability under varying conditions, maintaining

user trust and consistent performance in high-stakes applications.

→ Performance

The system must ensure consistent performance, tailored to the app's specific functionalities.

Response times for standard interface actions should not exceed 5 seconds, while complete

responses must be processed within 10 seconds. Notifications should be dispatched within 3

seconds to ensure timely communication with users. File uploads must initiate within 20

seconds, and real-time information transfer via WebSockets must have a maximum lag of 2

seconds. Efficient resource utilization, optimized handling of vector embeddings and large

language models, caching mechanisms, and load balancing must be implemented to support

seamless scalability and responsiveness, even under heavy usage or complex queries. These

measures will ensure a reliable and efficient experience for users engaging with large datasets

and regulatory documents.

→ Supportability

The system must include user manuals updated with each release to guide users on app usage

and features. Maintenance checks must occur regularly, with seamless, backward-compatible

updates to minimize disruption. Users must be notified 1 day before scheduled updates, and

downtime should be kept minimal. Comprehensive documentation for developers and

administrators must cover architecture, APIs, and troubleshooting. A robust support system

with FAQs, and a knowledge base must ensure timely issue resolution and user satisfaction.

Monitoring and automated alerts should promptly detect and address potential issues.

→ Scalability

The system must support horizontal scalability by allowing the addition of servers and elastic

storage to dynamically adjust based on user and data demands. Vertical scalability should

enable scaling of system components, such as CPU and memory, to maintain performance

standards during high usage. The architecture must be designed to efficiently handle growing

user bases and datasets without compromising response times or reliability. Regular stress

testing should ensure the platform’s ability to scale seamlessly as requirements evolve.

6



2.4. Pseudo Requirements

1. Nextjs bootstraped with TurboRepo will be used for the frontend

2. Python+FastAPI will be used for Svq Service

3. Deno+Express will be used for RAG Service

4. LangChain.js will be used for chunking in RAG Service

5. OpenAI Client will be used for generating query response and embeddings

6. MongoDB will be used as both NoSQL database and Vector Database

7. gRPC will be used at transport layer for all services+web app

2.5. System Models

2.5.1. Scenarios

Account Creation

→ Use case name: Create Account

→ Actor: User, SVQ Service

→ Entry Condition: User gives a valid email, password and username

→ Exit Condition: Account is successfully created if not already exists

→ Flow Events:

1. User sends email, password and username to svq service

2. Svq service validates if the account does not exist already

3. If the account already exits, svq service returns an error

4. Otherwise, svq service registers the user to the system

5. User is redirected to the login page

6. User types in email and password

7. User is logged in for the first time

Create Datasource for User

→ Use case name: Create new Datasource

→ Actor: User, SVQ Service, RAG Service

→ Entry Condition: User is already logged in to the system. User has a valid json web token

→ Exit Condition: New Datasouce with the specified name is created for the user

→ Flow Events:

1. User sends the name of the desired datasource to be created

2. If the datasource already exists with that name, svq service returns error

3. Otherwise, svq service registers this new datasource for the user

4. Svq service notifies rag service of this new datasource and awaits response

5. Rag service creates a new embeddings’ collection for this datasource

6. Rag service notifies svq service of the creation of this collection

7. Svq service notifies user of the successful creation of new datasource

Uploading File to an existing Datasource

→ Use case name: Upload file to Datasource

→ Actor: User, SVQ Service, RAG Service, OpenAI Client

→ Entry Condition: User is already logged into the system. User has a valid json web token.

Target Datasource already exists

7



→ Exit Condition: Embeddings are generated and both the file and its embeddings are

persisted into the database

→ Flow Events:

1. User selects the file that it wants to upload to the datasource

2. SVQ Service receives file content and file type that was uploaded

3. SVQ Service saves the file to an S3 Object Store

4. SVQ Service notifies user of the successful upload

5. SVQ Service notifies RAG Service of new file and passes the file path

6. RAG Service downloads file from the S3 Object Store

7. RAG Service parses file to chunks and calls OpenAI Client for embeddings

8. OpenAI Client returns embeddings for the given chunk

9. RAG Service saves embeddings to a vector store

Querying Datasource

→ Use case name: Query from Datasource

→ Actor: User, SVQ Service, RAG Service, OpenAI Client

→ Entry Condition: User is already logged in. User has a valid json web token. Datasource

with the specified name already exists

→ Exit Condition: SVQ Service finishes streaming OpenAI Client response to the user. Or

User cancels the query

→ Flow Events:

1. User selects the datasource that they want to query

2. User types into a text field the query they want to perform and sends it to SVQ

Service

3. SVQ Service forwards the request to RAG Service

4. RAG Service semantically embeds the query, retrieves relevant content and passes

the query and content to OpenAI Client

5. OpenAI Client generetas a response to the query

6. RAG Service returns the response to SVQ Service

7. SVQ Service returns the response to User

→ Alternative Flow Events:

6. OpenAI Client generates a query to fetch more related content

7. RAG Service semantically embeds OpenAI Client’s query, retrieves new relevant

content and returns to OpenAI Client

8. OpenAI Client generates an aggregated response

9. RAG Service returns response to AVQ Service

10. SVQ Service returns response to User

8



2.5.2. Use-Case Model

We have compiled downloaded the actions that can be performed by the user within our

current system. However, beware that this is subject to change since our proposed system

aims to include features such as public data sources.

9



2.5.3. Object and Class Model

The software architecture of svq.ai can be clearly seen via this class diagram. The archiecture

obeys the MVC architecture. There are 4 basic models that directly co-relate with the entities

that will be persisted in the system; these entities are, namely, users, datasources(datasets),

files, and embeddings. Models will be accessible to the application via Repositories–namely,

User Repository and Datasource Repository.

User Repository is pretty straight-forward; it will be responsible for creating and validating

existence of users. User repository will be used directly by the AuthService to expose access

management endpoints to the web.

Datasource Repository is a little more complex; it will not only be responsible for creating

datasources/datasets but will also manage uploads of files and their embedding generation.

This repository will require access to a chunk generation and object store interfaces to persist

files and their embeddings.

The transport layer is not shown in the diagram but the concept of service proxies makes use

of the fact that client-side code will have mirror services that abstract away the underlying

10



transport layer. In the future, svq.ai will be have the ability to switch protocols, e.g. to gRPC, for

improved performance and real-time updates/server side streams.

The software architecture relies heavily on the interfaces, thereby the underlying system

architecture can scale as required. For example, access management and RAG services can

be decoupled and can interop via an event driven approach. This can improve scalability and

maintenance of the entire application.

As can be seen, we have initially chose for persistence of models and embeddings because

this allows us to use the same database for both requirements; MongoDB supports vectors. We

have also chosen LangChain to implement chunk generation and OpenAI embedding

generating algorithm for storing embeddings. For UI-API integration, we will be using

Mobx-keystone because of the object-oriented approach of the framework.

2.5.4. Dynamic Models

→ New DataSource creation

This sequence diagram illustrates how the user will be able to create new datasources. As

evident, to create a datasource, the user must first be logged in and registered in the system.

User only needs to specify the name of the datasource that they want to create. SVQ Service

first creates a new datasource for the given user and then notifies the RAG Service to create a

new collection for the datasource

11



→ File Upload in DataSource

This figure illustrates how uploading of file works in the system. First a user selects the

datasource that they want to upload and then uploads the file. This process also requires

authenticated users. It can be seen clearly that the user does not have to wait for the

embedding algorithm to complete for large files. Once SVQ Service saves the file to an object

store, it notifies success to the user

→ File Embedding in the background

This sequence diagram shows how file embedding will run in the background. SVQ Servcie

asks the RAG Service to download the file from a shared object store. Once the embedding

completes, SVQ Service is notified via a webhook.

12



→ Querying Datasource

This sequence diagram shows how the datasource querying will be performed by the system.

This activity is just an encapsulation of a standard RAG pipeline but our SVQ Service will act as

a reverse proxy to the user, since all queries to a datasourcr need to be authenticated

2.5.5. User Interface

→ Create Account Page:

13



→ Login Page:

→ User Dashboard:

14



→ Create New Datasource:

15



→ Connect to Datasource:

→ Query Datasource Page:

16



3. Other Analysis Elements

3.1. Consideration of Various Factors in Engineering Design

In this section, many aspects that may affect Svq.ai will be discussed.

3.1.2. Constraints

→ Public Health:

There is no direct effect of public health that influences Svq.ai design

→ Public Safety:

Svq.ai internally uses a LLM. Hence, data integrity is a critical concern that affects Svq.ai’s

design. It must be ensured that the retrieval sources are from trusted and validated datasets to

avoid propagating misinformation, especially if the system will address critical public safety

topics such as emergency protocols or medical advice.

→ Public Welfare:

Accessibility of Svq.ai is one of our critical considerations. For accessibility in Svq.ai, we want

to prioritize ensuring that the system is usable by diverse populations, including those with

disabilities and limited technological resources. We will provide multi-modal interaction options,

such as text, voice, and screen-reader compatibility, to accommodate users with visual,

auditory, or physical impairments.

→ Global factors:

There is no direct impact of global factors because datasources will be private to the users.

→ Cultural factors:

For cultural factors inSvq.ai, we want to focus on language diversity and regional

adaptability. Therefore, we will ensure that our system supports multiple languages and

accounts for cultural nuances to provide accurate, context-sensitive responses.

→ Social factors:

Trustworthiness of the responses generated by Svq.ai are important. Henc,e for

trustworthiness, we will ensure that our system provides transparent, explainable outputs by

clearly indicating the sources of retrieved information and how they inform generated content.

→ Environmental factors:

Since Svq.ai is purely a software, there are no environmental considerations to be made

→ Economic factors:

One of the primary economic constraints is the storage of users’ data. For each dataset that a

user creates, a new database will have to be created. Given the size of each dataset and the

number of datasets per user, the upkeep of the system can become very expensive. For this

reason, it is crucial to operate efficiently in order to minimize the economic costs associated

17



with data storage. Additionally, the business model must be well thought, limiting users’ storage

capacity based on their subscription roles. Moreover, our reliance on LLMs as the central part

of the project makes it very resource demanding. With a need for large amounts of memory

and a powerful GPU and CPU, locally running our own LLM model will be very costly [1]. An

alternative is to leverage existing LLM APIs such as OpenAI. Additionally, another fundamental

aspect to our project is semantic embedding, which also requires powerful hardware, also

making it costly [2]. Once again, we will need to rely on existing models that are accessible

through API endpoints. These endpoints will be chosen through the efficacy and cost of the

respective models.

Table 1: Factors that can affect analysis and design

Effect level Effect

Public health 0 No Effect

Public safety 8 Data integrity is critical in case Svq.ai is

used for queries responses to urgent

situations

Public welfare 6 Svq.ai should be accessible by people with

disabilities and auditory impairment

Global factors 0 No Effect

Cultural factors 5 Svq.ai responses should support multiple

languages

Social factors 8 Responses from Svq.ai should be

trustworthy and referenced

Environmental factors 0 No Effect

Economic factors 10 Runnings inferences on LLMs is

expensive. Svq.ai will explore ways to

scale LLM inference while keeping costs

low

3.1.3. Standards

During the development phase of our AI models, it is important to know whether optimizations

are being made in the right direction. In order to clarify our direction of improvement, we have

created an evaluation criteria and testbench that will allow us to standardize and quantify the

evaluation of our models. The testbench consists of queries whose responses will be evaluated

using the criteria. This will allow us to make direct comparisons between the different iterations

of our system and see exactly where the differences and improvements lie. Moreover, having a

quantifiable score for different aspects of the models allows us to better understand the

weaknesses and areas of improvement. The evaluation criteria can be found in appendix A and

the testbench can be found in appendix B.

18



Furthermore, the system architecture will adhere to the following standards, just to

name a few:

1. OpenID Connect (OIDC): this protocol will be used for user authentication and

authorization. Identity and Access management providers like Keycloak support this standard

protocol

2. Advanced Message Queuing Protocol (AMQP): Message-oriented middlewares such

as RabbitMQ are based on AMQP application layer protocol and will be used for distributed

computation of chunks

3. Representational State Transfer (REST): client/server communication will take place

adhering to the RESTful standard. Data exchange format will be JSON (except for files, which

will uploaded as a multipart request)

4. Advanced Encryption Standard (AES): encryption/decryption of file contents by the

user will require cryptographic hashing based off of symmetric keys

5. Best Matching 25 (BM25): for querying reports/analytics of a datasource, full-text

search engines like Lucene will use this standard to return results of reports’ queries

19



3.2. Risks and Alternatives

Table 2: Risks

Likelihood Effect on the project B Plan Summary

Risk 1 Medium Data Breaches or

Unauthorized Access

Implement end-to-end

encryption, robust

authentication

mechanisms, and regular

security audits to safeguard

data.

Risk 2 Low Ingestion of Malicious or

Corrupted Files

Validate and sanitize all

uploaded files and

implement file scanning

tools to detect and block

threats.

Risk 3 High Hallucination or

Misinformation in Queries

Enhance validation

pipelines for responses and

provide source attribution

for transparency.

Risk 4 Medium Scalability Challenges Use scalable cloud

infrastructure and

implement rate-limiting to

manage resource

demands.

3.3. Project Plan

Table 3: List of work packages

WP# Work package title Leader Members involved

WP1 Implement Figma Design Mockups Muhammad Ghulam Ahmed,

Mehshid Atiq

WP2 Initialize Backend SVQ Service Muhammad Muhammad Rowaha

WP3 Initialize RAG Service Zahaab Zahaab Khawaja, Yassin

Younus

WP4 Support Datasource Creation Zahaab Zahaab Khawaja, Yassin

Younus, Muhammad

Rowaha

WP5 Integrate UI and SVQ Service Muhammad All

20

WP 1: Implement Figma Design Mockups

Start date: Nov’ 24 End date: Dec’ 24



21

Leader: Muhammad Members involved: Ghulam Ahmad, Mehshid

Atiq

Objectives: Figma mockups will be converted into jsx components without integration of

backend

Tasks:

Task 1.1 Initialization of Next.js App Router Repository

This repository will be solely responsible for working on the User interface of the app.

Issues assigned to the frontend will be solved in this repository

Task 1.2 Deploy Project

Next.js app will be deployed on Vercel cloud and the app url will be made public

Task 1.3 Convert Figma Mockups

Figma mockups will be converted into jsx components and client-side routing of pages will

be implemented

Deliverables:

D1.1 Github Nextjs Repository

D1.2 Deployed Frontend

D1.3 Figma Mockups to UI

WP 2: Initialize Backend SVQ Service

Start date: Nov’ 24 End date: Dec’ 24

Leader: Muhammad Members involved: Muhammad Rowaha

Objectives: SVQ Backend Service repository will be initialized with all dependencies

Tasks:

Task 1.1 Initialization of FastAPI-based SVQ Backend Service Repository

This repository will be solely responsible for working on the SVQ Service of the app. Issues

assigned to the backend will be solved in this repository

Task 1.2 Deploy Project

This service will be containerized and deployed to a cloud-provider, e.g. Railway

Task 1.3 Implement Auth Service

An access management service, e.g. Keycloak, will be integrated into the project and

Restful endpoints will be exposed for creation and management of users

Deliverables:

D1.1 Github FastAPI Repository

D1.2 Deployed SVQ Service

D1.3 Enabled Access Management for SVQ Service

WP 3: Initialize RAG Service

Start date: Nov’ 24 End date: Jan’ 25

Leader: Zahaab Members involved: Zahaab Khawaja, Yassin

Younus

Objectives: RAG Service repository will be initialized with all dependencies

Tasks:

Task 1.1 Initialization of LangChain-based RAG Service Repository

This repository will be solely responsible for working on the RAG Service of the app. Issues

assigned to RAG will be solved in this repository

Task 1.2 Deploy Project

This service will be containerized and deployed to a cloud-provider, e.g. Railway

Task 1.3 Integrate OpenAI Client

OpenAI Client, via API key, will be integrated into the RAG service and will be used for

generating embeddings and query results

Task 1.4 Integrate Vector Database



22

A vector database, e.g. MongoDB, will be integrated to the RAG service for storage and

retrieval of embeddings

Deliverables:

D1.1 Github RAG Service Repository

D1.2 Deployed RAG Service

D1.3 Generation of embeddings and query results

WP 4: Support Datasource Creation

Start date: Mid-Feb’ 25 End date: Apr’ 25

Leader: Zahaab Members involved: Zahaab Khawaja, Yassin

Younus, Muhammad

Rowaha

Objectives: SVQ Service and RAG Service will interop for data-source creation

Tasks:

Task 1.1 Integrate S3 Object Store

S3 based Object Store will be integrate into the application. SVQ Service will expose

endpoints to create datasources and upload files. RAG Service will download files from the

S3 Store and generate embeddings

Task 1.2 Event-based InterOP

SVQ Service will expose webhooks to the RAG Service. SVQ Service will request RAG

Service to begin embedding generation. RAG Service will notify success via exposed

webhook

Deliverables:

D1.1 S3 Object Store will be integrated

D1.2 SVG Service and RAG Service will interop

WP 5: Integrate UI and SVQ Services

Start date: Feb’ 25 End date: Mid-May’ 25

Leader: Muhammad Members involved: All

Objectives: SVQ Service and SVQ Web App will be integrated

Tasks:

Task 1.1 Mobx-Keystone Proxy Client-Side services

Frontend will develop mobx-based proxy (mirror) services to the SVQ Service. This will

allow seamless integration of the backend into the web app

Deliverables:

D1.1 SVQ Service and SVQ App will InterOP



Table 4: Gantt charts for work packages

3.4. Ensuring Proper Teamwork

● All group members are required to participate in weekly meetings.

● Every member must actively contribute to the project development lifecycle and group

decision-making process.

● Members are expected to research topics relevant to their assigned tasks and

collaborate by providing support to each other, seeking guidance from the supervisor

when necessary.

● Task assignments should align with individual interests and be distributed as fairly as

possible.

3.5. Ethics and Professional Responsibilities

The source code will be privately accessible to group members and graders on GitHub. It

should not be shared with any third parties until the project is completed.

● All software frameworks and libraries used must be acknowledged in accordance with

their licensing requirements.

● Weekly group meetings with the team and the supervisor will be scheduled for Fridays,

preferably in person.

3.6. Planning for New Knowledge and Learning Strategies

RAG models have recently become a prominent area of research, particularly with the rise of

large language models (LLMs). In the past month alone, numerous research papers have

explored the feasibility and potential optimizations of RAG models. Additionally, several RAG

models, including Hugging Face’s open-source model

(https://huggingface.co/docs/transformers/en/model_doc/rag), are available for developers and

academics.

23

https://huggingface.co/docs/transformers/en/model_doc/rag


During its development phase, Svq.ai will focus on incorporating the latest industry insights into

its core model. Given the extensive fine-tuning required for the hundreds of parameters Svq.ai

will utilize, the team may also develop innovative strategies for optimizing RAG models, thereby

contributing to the expanding body of research in this area.

By prioritizing ongoing learning and knowledge acquisition, as well as a research-driven

approach, Svq.ai aims not only to create a robust and competitive product but also to position

itself as a leader in the field of AI-driven retrieval systems.

4. Glossary

Criterion Sub-Criterion Brief Description Rating Scale (1-5)

Accuracy Document

Retrieval Accuracy

How well the model

retrieves the most

relevant regulatory

documents or

sections.

1: Irrelevant

documents retrieved

most of the time.

2: Limited relevance.

3: Moderately

relevant.

4: Mostly relevant

documents retrieved.

5: Highly relevant and

precise retrieval.

Fact-Checking Ensures generated

responses align with

retrieved

documents.

1: Responses are

mostly incorrect.

2: Frequent factual

errors.

3: Some factual

errors, mostly correct.

4: Rare factual errors.

5: Fully accurate

responses.

Context

Preservation

Maintains the

original meaning and

context of regulatory

clauses.

1: Context is often lost

or misinterpreted.

2: Frequent context

errors.

3: Maintains context

with some lapses.

4: Mostly accurate

context.

5: Perfectly maintains

context.

24



Comprehensiveness Regulation

Coverage

The model’s ability

to handle the entire

scope of applicable

regulations.

1: Major gaps in

coverage.

2: Limited coverage.

3: Moderate coverage

but with gaps.

4: Broad coverage

with minor gaps.

5: Fully

comprehensive.

Handling Complex

Queries

Handles nuanced,

multi-part, or

detailed regulatory

questions effectively.

1: Fails to address

complexity.

2: Struggles with

complexity.

3: Handles some

complexity but lacks

precision.

4: Handles most

complexities well.

5: Excels at

addressing complex

queries.

Generic Query

Handling

Ability to provide

meaningful and

accurate responses

to broad or generic

regulatory questions.

1: Provides vague or

irrelevant responses.

2: Struggles to

address generic

questions.

3: Provides

moderately useful

responses but lacks

depth.

4: Handles broad

queries well with

minor gaps.

5: Fully understands

and addresses

generic queries with

insightful responses.

25



Relevance Query

Understanding

Ability to understand

and interpret user

queries accurately.

1: Often misinterprets

queries.

2: Frequent

misinterpretations.

3: Adequate

understanding but

lacks precision.

4: Strong

understanding with

rare issues.

5: Consistently

accurate query

interpretation.

Pertinence of

Outputs

Relevance of the

retrieved documents

and generated

responses.

1: Responses are

mostly irrelevant.

2: Frequently

irrelevant responses.

3: Somewhat relevant.

4: Mostly relevant.

5: Highly relevant.

Legal Consistency Compliance with

Regulations

Ensures generated

outputs align with

the latest

regulations.

1: Outputs are often

non-compliant.

2: Frequent

compliance issues.

3: Adequate

compliance with

occasional lapses.

4: Mostly compliant.

5: Fully compliant with

regulations.

Consistency

Across Queries

Produces consistent

results for similar or

identical regulatory

queries.

1: Inconsistent across

queries.

2: Frequently

inconsistent.

3: Some

inconsistencies but

generally acceptable.

4: Mostly consistent.

5: Fully consistent.

26



Memory Context Retention The model's ability

to retain information

provided earlier in a

conversation.

1: Forgets context

frequently.

2: Retains context

inconsistently.

3: Retains context

moderately well but

may miss key details.

4: Retains context

with minor lapses.

5: Excellent retention

of context across

multi-turn

conversations.

Memory Accuracy How accurately the

model remembers

and applies past

context to new

queries.

1: Frequently recalls

inaccurate or

irrelevant information.

2: Often applies

context incorrectly.

3: Moderately

accurate recall.

4: Accurate recall with

rare issues.

5: Consistently

accurate and

contextually relevant

recall.

5. References

[1] Manuel, “Memory Requirement for LLM Training and Inference,” 2024. [Online]. Available

on:

https://medium.com/@manuelescobar-dev/memory-requirements-for-llm-training-and-inference

-97e4ab08091b

[2] Szymon Palucha, “Running a SOTA 7B Parameter Embedding Model on a Single GPU,”

2024. [Online]. Available on:

https://towardsdatascience.com/running-a-sota-7b-parameter-embedding-model-on-a-single-gp

u-bb9b071e2238

27


