

Bilkent University​
Department of Computer Engineering

​
Senior Design Project​

T2431 ​
Smart Vector Query

​
Final Report

Mehshid Atiq 22101335

Muhammad Rowaha 22101023

Ghulam Ahmed 22101001

Yassin Younis 22101310

Zahaab Khawaja 22101038

Supervisor: Uğur Doğrusöz

Innovation Expert: John Yuzdepski
04.03.2025​

This report is submitted to the Department of Computer Engineering of Bilkent University in partial fulfilment of the
requirements of the Senior Design Project course CS491/2.

Table of Contents

1. Introduction.. 5
1.1. Purpose of the system... 5
1.2. Design Goals...5

1.2.1. Accuracy... 5
1.2.2. Reliability..5
1.2.3. Security... 6
1.2.4. Supportability..6
1.2.5. Marketability...6
1.2.6. Scalability..6

1.3. Overview.. 7
2. Requirements Details... 8

2.1. Functional Requirements..8
2.1.1. User Interface and Navigation.. 8
2.1.2. Document Processing and Search Capabilities...8
2.1.3. User Management System.. 8
2.1.4. Regulatory Document Management System...9
2.1.5. Search Results and Response Generation... 9
2.1.6. Performance and Integration Requirements..9
2.1.7. Security and Compliance.. 9
2.1.8. Reporting and Analytics..9

2.2. Non-Functional Requirements..10
2.2.1. Usability.. 10
2.2.2. Reliability..10
2.2.3. Performance.. 11
2.2.4. Supportability.. 11
2.2.5. Scalability..11

3. Final Architecture and Design Details..12
3.1. Overview.. 12
3.2. Subsystem decomposition.. 13
3.3. Persistent data management..14
3.4. Access control and security.. 14
3.5. Standards.. 14

4. Development/Implementation Details.. 15
4.1. Web Client..15
4.1.1. View Layer.. 15
4.1.2. Service Layer.. 16
4.1.3. API Layer..17
4.2. Server... 18
4.2.1. Controller Layer..18

4.2.2. Data Layer...19
4.2.3. IAM Layer...20
4.3. RAG... 21
4.3.1. Embedding Layer..21

4.3.1.1. Query Layer...21
4.3.2. Data (Knowledge) Layer...22

8. Testing Details...22
8.1. Test case code conventions...22

8.1.1. Test Types..23
8.2. Test Cases... 23
8.3. RAG Benchmarks...47

8.3.1. Testing the RAG model...47
8.3.2. Types of Questions in the Testbench...47
8.3.3. Generating a Testbench... 49
8.3.4. Evaluation Metrics.. 51

9. Maintenance Plan and Details...54
9.1. Routine Monitoring and Health Checks... 54
9.2. Software and Infrastructure Updates.. 54
9.3. Data Management and Integrity... 55
9.4. Security Maintenance... 55
9.5. Issue Resolution and Support... 55
9.6. User Communication..55

10. Other Project Elements... 55
10.1. Consideration of Various Factors in Engineering Design.. 55

10.1.1. Economic Factors..56
10.1.2. Environmental Factors.. 56
10.1.3. Social Factors..56
10.1.4. Political Factors...57
10.1.5. Ethical Factors...57
10.1.6. Safety Factors..57
10.1.7. Sustainability Factors..58

10.2. Ethics and Professional Responsibilities.. 59
10.2.1. Upholding Data Privacy and Confidentiality..59
10.2.2. Ensuring Accuracy, Reliability, and Transparency... 60
10.2.3. Addressing Bias and Promoting Fairness... 60
10.2.4. Professional Accountability and Continuous Improvement... 60

10.3. Judgements and Impacts to Various Contexts.. 61
10.3.1. Impact on Professional Workflows and Economic Contexts..61
10.3.2. Societal Impact and Information Accessibility...61
10.3.3. Engineering Judgements and Their Consequences...61
10.3.4. Broader Environmental and Global Contexts... 62

10.4. Teamwork Details...62
10.4.1. Contributing and functioning effectively on the team.. 62
10.4.2. Helping creating a collaborative and inclusive environment..63
10.4.3. Taking lead role and sharing leadership on the team.. 63
10.4.4. Meeting objectives.. 64
10.4.5. New Knowledge Acquired and Applied... 65

11. Conclusion and Future Work.. 66
12. Glossary...67

12.1. Definitions, acronyms, and abbreviations.. 67
12.2. Evaluation Criteria and Rating Scale..68

13. References... 71

Final Report
SVQ: Smart Vector Query

1.​ Introduction
1.1.​ Purpose of the system

SVQ.ai is an advanced platform designed to help professionals navigate complex
regulatory documents with ease. It utilizes state-of-the-art Retrieval-Augmented
Generation (RAG) [1] technology, cutting-edge large language models (LLMs), and
modern vector databases [2] to enhance document retrieval. Users can upload various
document types, including regulatory texts, codebases, and textbooks, which are then
processed semantically for more effective searches. Through sophisticated chunking and
embedding techniques, SVQ.ai enables seamless querying of large files via an intuitive
chatbot interface, delivering precise and context-aware responses. Prioritizing efficiency,
accuracy, user experience, data privacy, and scalability, the platform is an essential tool
for professionals managing regulatory information. SVQ.ai targets professionals,
compliance officers, and researchers handling regulatory documents.

1.2.​ Design Goals

1.2.1.​ Accuracy

One of the primary goals of SVQ.ai is to deliver accurate and contextually
relevant responses. Accuracy is ensured through precise semantic processing,
robust chunking and embedding techniques, and intelligent query handling. The
platform is designed to minimize misinformation, reduce hallucinations, and
provide factually correct outputs that align with the original document's intent.
Indeed, SVQ.ai aims to be a reliable tool for professionals dealing with complex
regulatory documents, ensuring confidence in every response.

1.2.2.​ Reliability

SVQ.ai aims to increase reliability by introducing query responses, generated via
RAG, with back references to the content. Via transparency and explainability, the
system will be able to explain why a particular response was generated by linking
it back to the exact sections of the retrieved text. Back-referencing also ensures
that the system reliably handles ambiguity; instead of making false assumptions,
the system should acknowledge when the available documents do not fully
answer a query and provide a relevant response (e.g. a disclaimer). Since the

retrieved text is only loosely related to the query, SVQ.ai aims to extract response
without omitting full context and minimizing misinterpretation.

1.2.3.​ Security

SVQ.ai is designed with security at the forefront. To minimize operational costs,
SVQ.ai aims to maintain a shared database server (or a cluster) for all its users.
However, it is clearly not a safe approach considering users might be uploading
sensitive data. To counter this and maintain a balance between security and costs,
SVQ.ai will follow a database-per-user approach (multi-tenant architecture). For
the object stores maintaining users’ files, access to bucket objects will need to be
authorized. Objects will be stored in an encrypted format, and can only be
decrypted with the user’s key.

1.2.4.​ Supportability

To ensure supportability and improved user onboarding experience, the system
includes user manuals updated with each release to guide users on app usage and
features. Maintenance checks will also occur regularly, with seamless,
backward-compatible updates to minimize disruption. Furthermore, users will be
notified 1 day prior to scheduled updates; nevertheless, downtime will be kept
minimal. The repository will maintain a comprehensive documentation for
developers and administrators, and will cover architecture, APIs, and
troubleshooting. A robust support system with FAQs, and a knowledge base will
also ensure timely issue resolution and user satisfaction.

1.2.5.​ Marketability

For SVQ.ai, marketability is another key design goal, particularly given its role as
a tool for professionals navigating complex regulatory documents. Following a
B2C model, user adoption and trust are critical to its success; SVQ.ai aims to
attract a broad audience, including legal professionals, compliance officers,
researchers, and businesses seeking efficient document comprehension. By
focusing on marketability, SVQ.ai prioritizes a seamless user experience, intuitive
interactions, and high-value insights that encourage continued engagement.
Ensuring accuracy, reliability, and ease of use will be essential in driving
adoption, fostering trust, and maintaining a competitive edge in the regulatory
technology market.

1.2.6.​ Scalability

The core workflows powering SVQ.ai can be performance intensive and
introduce unnecessary latency overheads. Hence, it would have been futile to try
to accommodate multiple users on the SVQ.ai server. To counter such
unwelcoming circumstances, SVQ.ai embeds state-of-the-art workflow

orchestration built on top of Hatchet [3]. The performance intensive and
time-consuming tasks, such as embedding generation, parsing and chunking, are
all handled by Hatchet. This not only gives our users a coherent experience but
also provides opportunistic scalability.

1.3.​ Overview

SVQ.ai is an advanced LLM-driven platform designed to streamline the process of
navigating complex regulatory, legal, and technical documents. Leveraging
state-of-the-art RAG technology, LLMs, and modern vector databases, SVQ.ai provides
users with a seamless and intelligent way to access precise, context-aware information.

One of SVQ.ai’s core strengths is its advanced semantic processing. By analyzing
user-uploaded documents, the platform enables highly efficient and accurate information
retrieval. Through intelligent chunking and embedding techniques, SVQ.ai ensures that
users receive targeted responses to their queries, reducing the time spent searching
through vast amounts of information.

SVQ.ai also features an interactive chatbot interface, allowing users to engage in
dynamic, real-time conversations to extract key insights from their documents. The
system provides back-referenced answers, ensuring transparency and traceability by
linking responses directly to the source text. This enhances reliability and helps users
validate the retrieved information.

Another feature provided by SVQ.ai is the ability for the user to group documents into a
single data source–namely, Query Datasource (QD). When responding to a user query,
the system makes use of all such related documents to answer with more contextual
awareness, including critical information and reduced misinterpretations.

To further enhance security, SVQ.ai encrypts users’ documents with a symmetric
encryption algorithm–AES. This allows the user to upload and query sensitive data with
strong security guarantees. Furthermore, implementing a database-per-user approach in
SVQ.ai enhances security by isolating each user's data, including chat history, in separate
databases. This minimizes unauthorized access risks, as users can only access their own
data. Additionally, applying strict access controls simplifies compliance with data privacy
regulations, further strengthening the platform's security.

2.​ Requirements Details
2.1.​ Functional Requirements
The regulatory document querying platform, svq.ai, aims to simplify interaction with
regulatory documents through an advanced RAG-powered system. Here are the
comprehensive functional requirements necessary for successful implementation and
deployment.

2.1.1.​ User Interface and Navigation

The system requires an intuitive web interface that prioritizes user experience.
The primary navigation structure must include clearly defined sections for Home,
Reports, and Contact pages, with a persistent navigation bar across all pages. The
interface necessitates prominent call-to-action elements, including "Try it now"
and "Get started for free" buttons to maximize conversions. The chatbot interface
must be seamlessly integrated into the main application, providing users with a
natural conversation flow for document queries. The design must maintain
consistent branding elements and styling throughout the platform to ensure a
cohesive user experience.

2.1.2.​ Document Processing and Search Capabilities

At the core of the system lies the Retrieval Augmented Generation (RAG)
technology implementation. This technology must process regulatory documents
with high accuracy while reducing hallucination. The system must accept natural
language queries from users and process them to provide accurate, contextual
responses without hallucinations. The search functionality requires advanced
filtering capabilities that allow users to refine their searches based on multiple
parameters. The system must maintain an efficient indexing system for all
uploaded documents, ensuring quick retrieval and processing of information.

2.1.3.​ User Management System

The platform requires a good user management system that supports both free-tier
and premium access levels. User authentication and authorization mechanisms
must be implemented with industry-standard security protocols. The system must
track and maintain user sessions securely while storing user preferences and
search history. Profile management capabilities should allow users to customize
their experience and manage their document collections efficiently.

2.1.4.​ Regulatory Document Management System

The document management system must support various document formats
commonly used for regulatory documentation. Version control functionality is
essential to track document changes and updates over time. The system requires
batch processing capabilities to handle multiple documents simultaneously while
maintaining processing efficiency. Document security measures must be
implemented to ensure the confidentiality and integrity of uploaded materials.

2.1.5.​ Search Results and Response Generation

The response generation system must provide context-aware answers derived
directly from the source documents. Responses should include relevant citations
and references to source materials. The system must support the export of search
results and findings in multiple formats suitable for reporting and analysis. An
audit trail system must track all queries and responses for compliance and quality
assurance purposes.

2.1.6.​ Performance and Integration Requirements

System performance requirements dictate response times under three seconds for
standard queries under normal load conditions. The platform must handle multiple
concurrent users effectively without degradation in performance. Integration
capabilities must include API access for enterprise clients, allowing seamless
incorporation into existing workflows. The system must maintain compatibility
with major web browsers and provide responsive design for various device types.

2.1.7.​ Security and Compliance

Security requirements encompass comprehensive data protection measures,
including encryption for data in transit and at rest. The system must comply with
relevant data protection regulations and implement appropriate data retention and
deletion policies. Audit logging functionality must track system interactions for
security monitoring and compliance purposes. Clear terms of service and legal
disclaimers must be integrated into the platform to ensure legal compliance.

2.1.8.​ Reporting and Analytics

The reporting system must generate comprehensive analytics on document usage,
query patterns, and system performance. Reports must be available in multiple
formats and support custom report generation based on user requirements.
Analytics functionality should provide insights into user behavior and system
utilization patterns to support continuous improvement.

2.2.​ Non-Functional Requirements
The following non-functional requirements articulate the essential quality
attributes and operational constraints that underpin the svq.ai platform’s
effectiveness. Complementing the functional requirements—which delineate the
system’s intended behavior and capabilities—these criteria establish rigorous
benchmarks for usability, reliability, performance, security, and maintainability,
thereby ensuring that the platform satisfies both user expectations and
organizational standards under production conditions.

2.2.1.​ Usability

To guarantee that users can easily find and use functions, the interface must have
clear and simple navigation. With just three clicks from any page, all of the main
features should be available, reducing the amount of work needed to complete
tasks. To enhance user experience and prevent misunderstanding, all pages must
have a uniform style and design language. Interactivity and simplicity should be
balanced in the interface so that users may finish challenging activities without
feeling overburdened. It should also put aesthetics first, offering a visually
pleasing layout that is enjoyable to use. All non-trivial UI elements should
incorporate interactive tooltips or informational prompts to improve usability
even more. This will help users navigate the system efficiently and without the
need for extra assistance.

2.2.2.​ Reliability

The system must implement robust data security measures to ensure that all
uploaded documents are protected from unauthorized access. Data confidentiality
must be guaranteed through end-to-end encryption, with all data stored in an
encrypted format using industry-standard algorithms (e.g., AES-256). During
transmission, TLS (Transport Layer Security) protocols [4] must be employed to
safeguard data against interception or tampering. Access control mechanisms,
including role-based access control (RBAC) and multi-factor authentication
(MFA), must be enforced to limit access to authorized users only. Additionally,
zero-knowledge architecture can be utilized to ensure that data is not perceivable
even by the system administrators or service providers. Regular penetration
testing should be conducted to identify and mitigate potential vulnerabilities,
ensuring data confidentiality at all times. The system must ensure a minimum
uptime of 95%. Robust error-handling mechanisms must enable recovery from
failures without data loss. Automated data backups must occur every 7 days, with
redundancies in place to safeguard critical information. Rigorous testing,
including stress testing, is required to ensure stability and reliability under varying

conditions, maintaining user trust and consistent performance in high-stakes
applications.

2.2.3.​ Performance

The system must ensure consistent performance, tailored to the app's specific
functionalities. Response times for standard interface actions should not exceed 5
seconds, while complete responses must be processed within 10 seconds.
Notifications should be dispatched within 3 seconds to ensure timely
communication with users. File uploads must initiate within 20 seconds, and
real-time information transfer via WebSockets must have a maximum lag of 2
seconds. Efficient resource utilization, optimized handling of vector embeddings
and large language models, caching mechanisms, and load balancing must be
implemented to support seamless scalability and responsiveness, even under
heavy usage or complex queries. These measures will ensure a reliable and
efficient experience for users engaging with large datasets and regulatory
documents.

2.2.4.​ Supportability

The system must include user manuals updated with each release to guide users
on app usage and features. Maintenance checks must occur regularly, with
seamless, backward-compatible updates to minimize disruption. Users must be
notified 1 day before scheduled updates, and downtime should be kept minimal.
Comprehensive documentation for developers and administrators must cover
architecture, APIs, and troubleshooting. A robust support system with FAQs, and
a knowledge base must ensure timely issue resolution and user satisfaction.
Monitoring and automated alerts should promptly detect and address potential
issues.

2.2.5.​ Scalability

The system must support horizontal scalability by allowing the addition of servers
and elastic storage to dynamically adjust based on user and data demands. Vertical
scalability should enable scaling of system components, such as CPU and
memory, to maintain performance standards during high usage. The architecture
must be designed to efficiently handle growing user bases and datasets without
compromising response times or reliability. Regular stress testing should ensure
the platform’s ability to scale seamlessly as requirements evolve.

3.​ Final Architecture and Design Details

3.1.​ Overview
SVQ.ai leverages a scalable, distributed architecture to deliver its LLM-powered queries
on unstructured documents. The system adheres to a classic client-server model; yet, the
server orchestrates user queries by sending messages to a RAG service (acts as a forward
proxy for user queries). A responsive user interface is linked with a robust, secure
backend over a RESTful API and Websockets for real-time use cases like chatting.

The front-end of SVQ.ai is a web-based application and it relies on React + Typescript as
its foundation; this ensures a seamless user experience across various devices, ranging
from desktop to mobile platforms. To meet the required expectations of the product, it
leverages industrial-standard component libraries like ShadCN to deliver a coherent yet
user-friendly experience. SVQ.ai aims to keep bundle sizes minimal and leverages
advanced techniques like lazy-loading to reduce TTI.

The back-end of SVQ.ai, although logically a monolithic server, is implemented on a
serverless architecture. Each serverless function will be responsible for a specific task,
such as managing QD, uploading documents, querying documents. For data persistence, a
multi-tenant architecture has been used–powered by Turso–with the aim of achieving
data isolation and improved security.

To ensure further data security and user authentication, SVQ.ai integrates Keycloak
server–an OIDC-compliant authentication service. Keycloak allows SVQ.ai to maintain
industrially approved standards for IAM. Each serverless function will be authenticating
user requests with this Keycloak server; hence, the front-end first authenticates with the
Keycloak server and uses this token to make requests to the back-end.

The RAG (Retrieval-Augmented Generation) subsystem consists of two main flows:
embedding and response generation. In the embedding flow, input documents are
chunked and processed using an embedding model to extract entities and relationships,
which are deduplicated, enriched using an LLM, and stored in a vector database and
knowledge graph. The response generation flow begins when a query is received;
relevant entities, relations, and text units are retrieved using embeddings and keyword
extraction. A structured context is created using system prompts and combined with the
query to generate a response via an LLM. This ensures accurate, context-aware answers
by leveraging stored knowledge efficiently.

This architecture offers a scalable and reliable foundation for SVQ.ai, supporting core
functionalities while allowing future expansion and integration of new features, ensuring
continuous growth and adaptation to user needs.

3.2.​ Subsystem decomposition

Figure 1: Subsystem Decomposition

3.3.​ Persistent data management

SVQ.ai leverages Turso, a distributed SQLite database, to efficiently implement its
multi-tenant architecture, ensuring seamless and secure data isolation for different users.
By utilizing Turso's edge-hosted, low-latency databases, SVQ.ai can dynamically allocate
storage and computational resources per tenant, enabling scalable and efficient handling
of requests. With built-in access controls and tenant-level data partitioning, SVQ.ai
maintains strict data privacy and security compliance, reinforcing its role as a trusted tool
for protecting users’ sensitive documents.

Nano serves as a vector database in the RAG subsystem, storing and retrieving
high-dimensional embeddings of document chunks, entities, and relations. During
querying, it enables fast similarity searches [5], retrieving the most relevant entities,
relations, and text for context-aware response generation.

3.4.​ Access control and security
SVQ.ai integrates Keycloak [6] to handle access control and authentication for Lambda
functions within its system. As an IAM solution, Keycloak enables secure authentication,
ensuring that only authorized users and services can interact with SVQ.ai’s resources.
SVQ.ai configures Keycloak to issue JWT tokens that verify identities. When a Lambda
function is triggered whether for document processing, retrieval, or RAG-powered
responses, it must present a valid Keycloak-issued token. The platform then validates this
token against Keycloak’s authorization server, ensuring that the request originates from
an authenticated and authorized source. With automatic token refresh, federated identity
support, and logging features, Keycloak enhances security, simplifies user management,
and provides detailed audit trails for monitoring Lambda executions and user interactions.

SVQ.ai employs AES to securely encrypt users’ uploaded documents, ensuring data
confidentiality both at rest and in transit. Before storing documents in the system, SVQ.ai
encrypts them using AES-256 [7], a robust symmetric encryption algorithm widely
recognized for its high security and efficiency. Each tenant’s data is encrypted with
unique keys, preventing unauthorized access even if storage is compromised. By
leveraging AES encryption, SVQ.ai safeguards sensitive regulatory documents from
unauthorized exposure while maintaining fast and efficient retrieval when authorized
users query the system.

3.5.​ Standards
●​ OpenID Connect (OIDC): this protocol will be used for user authentication and

authorization. Identity and Access management providers like Keycloak support this

standard protocol

●​ Representational State Transfer (REST): client/server communication will take place

adhering to the RESTful standard. Data exchange format will be JSON (except for files,

which will uploaded as a multipart request)

●​ Advanced Encryption Standard (AES): encryption/decryption of file contents by the

user will require cryptographic hashing based off of symmetric keys

●​ Unified Modeling Language (UML): utilized for modeling the system architecture,

such as subsystem decompositions and class diagrams. This standard helps in visualizing

the structure of the project.

4.​ Development/Implementation Details
4.1.​ Hatchet Workflow Orchestration

​
Figure 2: Hatchet Workflow Orchestration

4.2.​ Web Client

4.2.1.​ View Layer

​
Figure 3: View Layer for Web Client

This View Layer Decomposition diagram represents the user interface (UI)
structure of SVQ.ai, illustrating how different pages and popups interact.

1.​ UI Pages:
○​ The Login Page and Create Account Page allow users to authenticate and

register on SVQ.ai.
○​ The Dashboard Page serves as the central hub, where users can perform

actions on their query datasources.
○​ The Manage Query Datasource Page enables users to organize and

maintain the documents in their Query Datasources
○​ The Chat Query Datasource Page provides an interface where users can

interact with the SVQ.ai query pipeline to retrieve information from their
selected datasource.

2.​ UI Popups:
○​ The Delete Query Datasource Popup allows users to confirm the deletion

of a datasource, ensuring they don’t accidentally lose important
documents.

○​ The Create Query Datasource Popup enables users to add new datasources
by uploading documents or configuring access to external sources.

3.​ Implementation:​
The frontend was bootstraped with a Next.js Pages Router application, and PNPM
as the package manager. TailwindCSS + ShadCN UI were used for implementing
the Figma designs.

4.2.2.​ Service Layer

​
Figure 4: Service Layer for Web Client

This Service Layer Decomposition diagram represents the structure of web client
global application state. The services are implemented using Mobx-Keystone
models, and each service is a singleton that can be referenced from anywhere
inside the application.

1.​ Query Datasources Service:
○​ Provides functionalities to interact with the query datasources on the client

level.
○​ Abstracts the underlying network API endpoints and provides a seamless

integration of CRUD operations on query datasources

2.​ Chat Datasource Service:
○​ Using the Live Socket Service, enables the consumers to interact with the

SVQ.ai query pipeline for real-time responses using Websockets.
○​ Hides the underlying complexity of real-time communication by providing

a reactive observables for consumers to react to
3.​ Document Annotation Service:

○​ Provides the consumers with the functionality of annotating certain parts
of a selected document and returns the blob objects for rendering

4.​ Live Socket Service:
○​ maintains an open Websocket connection with the SVQ.ai servers for the

entire lifetime of the application state
5.​ S3 Service:

○​ Provides abstraction of managing documents for a given query datasource
6.​ Implementation:​

The service layer for the SVQ.ai app is implemented with Mobx-Keystone that
provides the app with necessary reactivity e.g. Websocket events.​

4.2.3.​ API Layer

​
Figure 5: API Layer for Web Client

This API Layer Decomposition diagram represents how SVQ.ai handles API
interactions, particularly authentication and request handling.

1.​ Keycloak Client:
○​ Handles authentication and authorization using Keycloak, ensuring secure

user access.
○​ It interacts with the Axios API Client to attach authentication tokens to

outgoing requests.
2.​ Axios API Client:

○​ Acts as the primary interface for making HTTP requests to SVQ.ai’s
backend services.

○​ It integrates with Keycloak to include authentication headers in API
requests.​

3.​ Axios API Request Middleware:
○​ Intercepts outgoing API requests to modify or validate them before they

reach the server.
○​ Typically used for adding headers, logging requests, or handling retries.

4.​ Axios API Response Middleware:
○​ Processes responses from the server before they reach the frontend.
○​ Used for handling errors, refreshing tokens, or transforming data formats.

5.​ Implementation:​
The api layer of SVQ.ai consists of integration of a RESTful API and Websocket
events. For integrating the RESTful API, a global Axios instance was exposed to
all services. For Websocket integration, Stomp.js client was used.

4.3.​ Server

4.3.1.​ Controller Layer

​
Figure 6: Controller Layer for Server

This Controller Layer Decomposition diagram represents how SVQ.ai manages
core functionalities through an API gateway, handling various operations related
to QD and security.

1.​ API Gateway:
○​ Central entry point for all client requests.
○​ Routes requests to the appropriate controllers for processing.
○​ Ensures authentication and authorization by interacting with the OAuth

Provider.
2.​ Exception Middleware:

○​ Captures and handles errors, ensuring stable API behavior
○​ Adheres to standard practices for errors such as HTTP status codes and

structured error responses
3.​ Query Datasource Management:

○​ Create Query Datasource: Initializes a new collection of files for querying.
○​ Upload File to Query Datasource: Adds files to an existing datasource.
○​ Remove File from Query Datasource: Deletes specific files from a

datasource.
○​ Delete Query Datasource: Removes an entire datasource when no longer

needed, and batch deletes files
4.​ Chat & Document Processing:

○​ Chat with Query Datasource: Allows users to interact with the
RAG-powered chatbot.

○​ Get Annotated Document: Retrieves processed or annotated documents
based on user queries.

○​ Document Encryption: Ensures secure storage and retrieval of documents.
5.​ Security & Authentication:

○​ The OAuth Provider handles user authentication and authorization.

○​ Document Encryption protects sensitive data before storage or
transmission.

6.​ Implementation:​
The controller layer of SVQ.ai is implemented with FastAPI running inside
Uvicorn web server. FastAPI exposes RESTful and Websocket endpoints to the
application

4.3.2.​ Data Layer

​
Figure 7: Data Layer for Server

This Data Layer Decomposition is a critical component of the SVQ.ai platform,
responsible for handling data storage, retrieval, encryption, and secure access
across multiple tenants.

1.​ Multi-Tenant Database Connector
○​ Acts as a central interface for managing database connections across

multiple users or organizations.
○​ Ensures data isolation and access control for different tenants using secure

authentication and authorization mechanisms.
2.​ Chat Histories

○​ Stores past user interactions, allowing for personalized experiences and
context-aware query handling.

○​ Enables users to retrieve previous conversations, improving response
accuracy and reducing redundant queries.

3.​ Query Datasources
○​ Stores metadata about query datasources for a given user

4.​ Keys Management Service
○​ Oversees encryption key storage, rotation, and security policies.

○​ Ensures sensitive data, such as chat histories and encrypted documents,
remains protected.

○​ Works in tandem with other components to enforce secure access to
confidential information.

5.​ Object Store Connector
○​ Acts as an interface between the platform and external object storage

services (e.g., AWS S3, Google Cloud Storage).
○​ Enables the retrieval and storage of large documents while maintaining

scalability.
○​ Supports seamless integration with Encrypted Documents for secure data

handling.
6.​ Encrypted Documents

○​ Stores uploaded documents in a secure, encrypted format.
○​ Ensures compliance with data privacy regulations by preventing

unauthorized access.

4.3.3.​ IAM Layer

​
Figure 8: IAM Layer for Server

The IAM (Identity and Access Management) Layer is responsible for handling
authentication, authorization, and user management within the SVQ.ai platform. It
ensures secure access to resources by managing user identities, roles, and
permissions. This layer integrates with Keycloak, an open-source identity and
access management solution, to provide centralized authentication.

1.​ Keycloak Admin
○​ Serves as the administrative interface for managing users, roles,

permissions, and authentication policies.
○​ Provides tools for configuring identity providers, user federation, and

session management.
○​ Works with the Keycloak Connector to enforce authentication and

authorization rules across the platform.

2.​ Keycloak Connector
○​ Acts as an intermediary between the Keycloak Admin and the

application’s authentication system.
○​ Facilitates secure communication for user login and token validation.
○​ Ensures seamless integration with other services by providing identity

federation and access token management.

4.4.​ RAG​

4.4.1.​ Embedding Layer​

​
Figure 9: Embedding Layer for RAG

This subsystem module is responsible for processing input documents, extracting
entities and relationships, and storing them in structured formats for efficient
retrieval. Document chunks are indexed using a Hierarchical Navigable Small
World (HNSW) graph for ultra-fast nearest-neighbor lookup [9].

1.​ Text Chunker
○​ Text Chunker splits documents into smaller chunks.
○​ Embedding Generator uses an embedding model (EB Model) to create

vector representations of text.
2.​ Entity & Relation Extraction Module

○​ Entities & Relations Extractor extracts named entities, relationships, and
relevant metadata.

○​ Deduplication ensures uniqueness of entities and relations using a "Set"
deduplication approach.

4.4.2.​ Query Layer

​
Figure 10: Query Layer for RAG

This subsystem decomposition handles user queries by retrieving relevant context
from the stored embeddings and knowledge graph, then generating responses
using a language model.

1.​ Keyword Extractor
○​ Uses Keyword Extraction Prompt to extract relevant keywords from the

user query.
○​ The extracted keywords are then passed to the Response Generator for

further processing.
2.​ Response Generator

○​ Takes extracted keywords and uses System Template Prompts to construct
a meaningful response.

○​ Generates the final response based on the structured information received.

4.4.3.​ Data (Knowledge) Layer

​
Figure 11: Data Layer for RAG

The subsystem decomposition serves core components connecting both
embedding and response generation flows for efficient retrieval and reasoning.

1.​ Key-Value Index Storage: Stores extracted structured data in a KV storage.

2.​ Vector Database Storage: Stores vector embeddings in a vector DB for fast
retrieval.

3.​ Knowledge Graph Storage: Stores deduplicated entities and relationships in a
structured knowledge graph.

5.​ Testing Details
5.1.​ Test Case Code Conventions
The following Context-Free Grammar notation illustrates the test code convention:

 < 𝑡𝑒𝑠𝑡_𝑐𝑜𝑑𝑒 > :: = < 𝑡𝑒𝑠𝑡_𝑡𝑦𝑝𝑒 > < 𝑡𝑒𝑠𝑡_𝑛𝑢𝑚𝑏𝑒𝑟 > < 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 >
 < 𝑡𝑒𝑠𝑡_𝑡𝑦𝑝𝑒 > :: = 1 | 2

 < 𝑡𝑒𝑠𝑡_𝑛𝑢𝑚𝑏𝑒𝑟 > :: = < 𝑑𝑖𝑔𝑖𝑡 > < 𝑑𝑖𝑔𝑖𝑡 >
 < 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 > :: = < 𝑑𝑖𝑔𝑖𝑡 > | < 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 > < 𝑑𝑖𝑔𝑖𝑡 >

 < 𝑑𝑖𝑔𝑖𝑡 > :: = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

For example:
10101: refers to the first iteration of the first test case of the test category of type one.

5.1.1.​ Test Types

TTest Type Test Category Name

1 Functional Testing

2 Integration Testing

3 User Acceptance Testing

4 Performance Testing

5 Security Testing

6 Usability Testing

7 Compatibility Testing

5.2.​ Test Cases​
Test ID: 10101

●​ Type: Functional Testing
●​ Objective: Create Account and Login
●​ Steps:

○​ Click on ‘Create Account’ button on Login Page

○​ Redirect to the Create Account page
○​ Enter unique username and password
○​ Notify successful account registration
○​ Redirect to Login page
○​ Enter registered username and password
○​ Redirect to Dashboard page

●​ Test Results: User authentication flow worked successfully, and could access
protected routes successfully

●​ Priority: Critical
●​ Status: Passed

Test ID: 10201
●​ Type: Functional Testing
●​ Objective: Verify Back-Referencing of Documents with Annotations
●​ Steps:

○​ Upload a document to a Query Datasource in SVQ.ai
○​ Query the document using the chat interface
○​ Receive a response with referenced document sections
○​ Verify back-references by clicking on citations or highlighted text
○​ Ensure correct navigation to the referenced document section

●​ Test Results:
○​ Responses included accurate back-references to the document

●​ Priority: Critical
●​ Status: Passed

Test ID: 10301
●​ Type: Functional Testing
●​ Objective: Verify the Ability to Maintain and View Chat History for a Given

Query Datasource
●​ Steps:

○​ Select a Query Datasource from the dashboard
○​ Start a chat session and enter multiple queries
○​ Receive responses and ensure they are correctly displayed in the chat

interface
○​ Close the chat session and navigate away from the page
○​ Reopen the same Query Datasource’s chat session and verify that previous

conversations are retained
○​ Scroll through chat history to check if messages are correctly loaded
○​ Test session persistence by logging out and logging back in, then

accessing the same Query Datasource
○​ Ensure timestamps and user messages are correctly associated with the

chat history

●​ Test Results:
○​ Chat history is maintained and correctly linked to the Query Datasource
○​ Users can view past conversations even after logging out and back in

●​ Priority: Major
●​ Status: Passed

Test ID: 10401

●​ Type: Functional Testing
●​ Objective: Verify Handling of Unsupported File Formats
●​ Steps:

○​ Log in to SVQ.ai with valid credentials.
○​ Navigate to the “Manage Query Datasource” page for an existing QD.
○​ Attempt to upload an unsupported file type (e.g., .exe file).
○​ Observe any system notifications or error messages.

●​ Test Results:
○​ System rejects unsupported file types, displaying a clear error message.
○​ No chunking or embedding process is triggered.
○​ The QD remains unchanged.

●​ Priority: Minor
●​ Status: Passed

Test ID: 10501

●​ Type: Functional Testing
●​ Objective: Validate Document Deletion Flow
●​ Steps:

○​ Log in and open an existing Query Datasource containing multiple
documents.

○​ Select one document and click “Remove File.”
○​ Confirm deletion when prompted.
○​ Reload the page or navigate away and return.​

●​ Test Results:

○​ The selected document is permanently removed from the QD.
○​ Any associated embeddings and encrypted object storage entries are

deleted.
○​ The user is notified that the file was successfully removed.

●​ Priority: Major
●​ Status: Passed

Test ID: 10601

●​ Type: Functional Testing
●​ Objective: Check Multi-Document Query Handling
●​ Steps:

○​ Log in and create or open a QD with two or more documents uploaded.
○​ Enter a chat query referencing content from multiple documents (e.g.,

“Compare Section 2 from Doc A with Chapter 4 from Doc B”).
○​ Observe the system’s combined response.
○​ Verify the references/citations returned are from the correct sections in

both documents.
●​ Test Results:

○​ The system identifies and retrieves content across multiple documents.
○​ The aggregated response is coherent, with correct back-referencing to each

source.
●​ Priority: Major
●​ Status: Passed

Test ID: 10701

●​ Type: Functional Testing
●​ Objective: Validate Document Re-Upload (Versioning)
●​ Steps:

○​ Log in and open a QD.
○​ Upload “Document A” (initial version).
○​ Make changes to “Document A” locally (e.g., add paragraphs).
○​ Re-upload the updated “Document A” under the same file name.
○​ Observe how SVQ.ai handles this new version (overwrite or version

control).
●​ Test Results:

○​ The updated document is recognized and re-processed (chunking,
embedding).

○​ The system either replaces the old file or creates a new version, depending
on design specs.

○​ No leftover references point to outdated data.
●​ Priority: Normal
●​ Status: Passed

Test ID: 10801

●​ Type: Functional Testing
●​ Objective: Verify Large File Size Limits and Error Handling
●​ Steps:

○​ Log in to SVQ.ai with valid credentials.
○​ Open an existing QD.
○​ Attempt to upload a file that exceeds the platform’s max size limit (e.g.,

>500MB).
○​ Observe any error messages or system behavior.
○​ Test Results:
○​ The system immediately rejects files larger than the configured limit.
○​ A clear, user-friendly error message is displayed.
○​ No partial data is stored.

●​ Priority: Normal
●​ Status: Passed

Test ID: 10901

●​ Type: Functional Testing
●​ Objective: Validate Partial Document Search
●​ Steps:

○​ Create or open a QD with two large documents.
○​ Use the chat to search for content you know exists only in the middle

section of one document.
○​ Compare the system’s result with the actual text location.

●​ Test Results:
○​ The system locates and references the correct segments, not only the

beginning or end.
○​ Back-references accurately cite the relevant mid-document chunk(s).

●​ Priority: Major
●​ Status: Passed

Test ID: 11001

●​ Type: Functional Testing
●​ Objective: Confirm Handling of Multi-Language Documents
●​ Steps:

○​ Upload one English-language PDF and one non-English (e.g., Spanish or
French) PDF to the same QD.

○​ Query content in both languages.
○​ Verify the system’s ability to recognize and retrieve the correct text

segments.
●​ Test Results:

○​ The system can handle multi-language embedding and chunking without
errors.

○​ Back-references in responses accurately point to the language-specific
document.

●​ Priority: Normal
●​ Status: Passed

Test ID: 11101

●​ Type: Functional Testing
●​ Objective: Verify User Settings Persistence (e.g., Notification Preferences)
●​ Steps:

○​ Login and navigate to the user settings page.
○​ Change notification preferences (e.g., email alerts on/off).
○​ Refresh the page or log out and back in.
○​ Confirm that settings remain as previously selected.

●​ Test Results:
○​ Settings changes persist across sessions.
○​ No reversion to defaults without user action.

●​ Priority: Low
●​ Status: Passed

Test ID: 11201

●​ Type: Functional Testing
●​ Objective: Validate Renaming Query Datasource
●​ Steps:

○​ Login, go to the Dashboard, and select a QD.
○​ Click “Edit QD Name” to rename it.
○​ Confirm the new name appears throughout the UI (Dashboard, Chat page,

etc.).
○​ Attempt a chat query on the renamed QD.

●​ Test Results:
○​ The system correctly updates all references to the QD’s name.
○​ No broken links or references to the old name.

●​ Priority: Normal
●​ Status: Passed

Test ID: 11301

●​ Type: Functional Testing
●​ Objective: Test Quick Search for Existing Documents in a QD
●​ Steps:

○​ Open a QD containing multiple documents (different titles).

○​ Use a “Quick Search” or “Filter” box (if provided) to locate a specific
document by title or keyword.

○​ Click the result to open or preview that document.
●​ Test Results:

○​ The quick search function displays only matching documents.
○​ Opening a document from search loads the correct file details.

●​ Priority: Low
●​ Status: Passed

Test ID: 11401

●​ Type: Functional Testing
●​ Objective: Confirm Behavior on Partial Document Upload Cancellation
●​ Steps:

○​ Begin uploading a large document (e.g., 200MB).
○​ Cancel the upload partway through (e.g., close the dialog or click a

“Cancel” button).
○​ Observe system logs or state to ensure no partial chunks are saved.

●​ Test Results:
○​ The upload is fully aborted.
○​ No partial data or embeddings remain in the system.

●​ Priority: Minor
●​ Status: Passed

Test ID: 11501

●​ Type: Functional Testing
●​ Objective: Verify Custom Disclaimers for Specific Document Types
●​ Steps:

○​ Configure the system so that legal or highly sensitive documents
automatically trigger a custom disclaimer.

○​ Upload a legal document (e.g., a legislative text).
○​ Open the Chat and ask for advice on that document’s content.
○​ Check that the response includes or prefaces with a custom disclaimer

(e.g., “This is not legal advice”).
●​ Test Results:

○​ The platform consistently appends relevant disclaimers based on the
document category.

○​ Users are clearly informed about disclaimers when referencing specific
doc types.

●​ Priority: Major

●​ Status: Passed

Test ID: 20101
●​ Type: Integration Testing
●​ Objective: Create First Query Datasource (QD)
●​ Steps:

○​ Click on ‘Create Query Datasource’ button on Dashboard Page
○​ Redirect to Manage Query Datasource Page w/ param type=’create’
○​ Create new database for user
○​ Associate symmetric key with database, and store in key management

system
○​ Create first Query Datasource in the users’ database
○​ Notify user of successful Query Datasource creation
○​ Redirect to Manage Query Datasource Page w/ param type=’edit’

●​ Test Results: The system is able to create a new database per user, obeying
multi-tenant architecture, and associates symmetric key to each user for
encrypting documents

●​ Priority: Critical
●​ Status: Passed

Test ID: 20201

●​ Type: Integration Testing
●​ Objective: Upload File to Query Datasource
●​ Steps:

○​ Click on ‘Upload Document’ button on Manage Query Datasource page
○​ Select a document from the system
○​ Click ‘upload’ once the document has been loaded
○​ Forward document to chunking and embedding lambda
○​ Store embeddings, content and citations in QD vector database
○​ Forward document to file management lambda
○​ Encrypt document with user’s symmetric key
○​ Upload to S3 store
○​ Notify user of successful file upload

●​ Test Results: The system is able to not only chunk and embed documents, but
also successfully encrypts them and stores them in the object store

●​ Priority: Critical
●​ Status: Passed

Test ID: 20301

●​ Type: Integration Testing
●​ Objective: Chat with a Query Datasource

●​ Steps:
○​ Select a Query Datasource from the Dashboad Page
○​ Redirect to Chat with Query Datasource page
○​ Enter a query in the chat prompt
○​ Forward query to the response-generation lambda
○​ Retrieve embeddings from the QD vector database
○​ Generate response from the LLM
○​ Stream response to the user using Websocket connection

●​ Test Results: User is able to query a selected query datasource and receive replies
from the system in real time using a live socket connection

●​ Priority: Critical
●​ Status: Passed

Test ID: 20401

●​ Type: Integration Testing
●​ Objective: Validate Automatic Key Rotation
●​ Steps:

○​ Log in with valid credentials.
○​ Upload a document to a QD.
○​ Trigger an event that forces key rotation (e.g., an admin function or

scheduled rotation).
○​ Attempt to re-download or query the uploaded document.

●​ Test Results:
○​ The system generates a new encryption key and updates the Key

Management Service.
○​ Previously uploaded documents remain accessible using the new key.
○​ No data corruption or access errors occur.

●​ Priority: Major
●​ Status: Passed

Test ID: 20501

●​ Type: Integration Testing
●​ Objective: Check Cross-Service Error Handling (Chunking Lambda Failure)
●​ Steps:

○​ Temporarily disable or simulate an error in the chunking-and-embedding
Lambda.

○​ Attempt to upload a new document to a QD.
○​ Observe error handling in the serverless workflow.

○​ Verify that no partial data is stored and that the user receives an
appropriate error message.

●​ Test Results:
○​ The system gracefully handles Lambda failures without storing

partial/invalid data.
○​ The user receives a descriptive error message prompting them to retry or

contact support.
●​ Priority: Normal
●​ Status: Passed

Test ID: 20601

●​ Type: Integration Testing
●​ Objective: Validate Logging and Audit Trails for Chat Queries
●​ Steps:

○​ Log in and initiate several chat sessions with different QDs.
○​ Log out and log in as an admin.
○​ Access the Keycloak or system admin panel to view audit logs.
○​ Verify that each chat query is recorded with a timestamp, user ID, and QD

reference.
●​ Test Results:

○​ Every chat query and user interaction is properly logged.
○​ Audit logs clearly indicate the user, timestamp, and QD used.
○​ No sensitive content is stored in the logs (only minimal metadata).

●​ Priority: Major
●​ Status: Passed

Test ID: 20701

●​ Type: Integration Testing
●​ Objective: Test Collaboration with External Security Tools (e.g., Virus/Malware

Scanner)​

●​ Steps:
○​ Configure SVQ.ai to run a third-party malware scan on each uploaded file.
○​ Upload a known benign file and confirm it passes.
○​ Attempt to upload a file with a known virus/malware signature (in a

controlled environment).
○​ Observe system response and logs.

●​ Test Results:
○​ The benign file uploads normally after passing the malware scan.

○​ The infected file triggers an immediate block, with a warning message
shown to the user.

○​ Logs clearly record any blocked uploads.
●​ Priority: Major
●​ Status: Passed

Test ID: 20801
●​ Type: Integration Testing
●​ Objective: Validate Integration with Third-Party LLM API for Query Processing
●​ Steps:

○​ Send a test query from SVQ.ai’s chat interface to the backend
○​ Forward the query to the third-party LLM API via the API gateway
○​ Verify authentication using API keys
○​ Receive the response from the LLM API and check for a valid JSON

output
○​ Parse and process the response within SVQ.ai’s application logic
○​ Display the response to the user in the chat UI
○​ Test error handling by simulating API failures (e.g., network errors, rate

limits, invalid requests)
○​ Review logs of API interactions for debugging, analytics and cost

predictions
●​ Test Results:

○​ The third-party LLM API processes queries and returns structured,
relevant responses.

○​ API authentication and error handling function correctly.
○​ Query responses are displayed in real-time with acceptable latency.

●​ Priority: Critical
●​ Status: Passed

Test ID: 20901

●​ Type: Integration Testing
●​ Objective: Validate Asynchronous Queuing for Document Processing
●​ Steps:

○​ Upload multiple documents in rapid succession (e.g., 5–10 large files).
○​ Confirm that chunking/embedding is handled asynchronously via a

message queue or Lambda queue.
○​ Monitor processing logs to ensure each document is queued, processed in

order, and completed.
○​ Check for any collisions or resource starvation.

●​ Test Results:

○​ All documents are eventually processed without collisions or lost tasks.
○​ The queue mechanism scales automatically if many documents arrive

together.
●​ Priority: Major
●​ Status: Passed

Test ID: 21001

●​ Type: Integration Testing
●​ Objective: Confirm Partial Embedding Storage Failure Recovery
●​ Steps:

○​ Temporarily induce a partial failure in the vector DB (e.g., misconfigured
DB or limited capacity).

○​ Upload a document and observe whether chunking steps continue while
embeddings fail to store.

○​ Check system logs and final state of the QD.
●​ Test Results:

○​ The system detects embedding storage failure and either retries or notifies
the user.

○​ No incomplete or inconsistent embedding data remains.
●​ Priority: Normal
●​ Status: Passed

Test ID: 21101

●​ Type: Integration Testing
●​ Objective: Check Integration with System Notifications (Email/Slack, etc.)
●​ Steps:

○​ Configure a test email or Slack webhook for user notifications.
○​ Perform a significant action (e.g., create QD, upload documents, trigger

key rotation).
○​ Verify whether an email or Slack message is sent out with the relevant

info.
○​ Attempt actions with minimal significance and confirm no spam

notifications occur.
●​ Test Results:

○​ Users/admins receive notifications only for configured high-priority
events.

○​ Messages contain correct event details and timestamps.
●​ Priority: Low
●​ Status: Passed

Test ID: 21201

●​ Type: Integration Testing
●​ Objective: Validate Multi-Document Summaries from the LLM
●​ Steps:

○​ Upload multiple related documents (e.g., chapters of a regulation).
○​ Ask the chat for a “summarized highlight across all docs.”
○​ Confirm the system calls the LLM with references to each relevant chunk.
○​ Check that the aggregated summary is accurate and references each doc in

the final response.
●​ Test Results:

○​ The LLM correctly merges data from multiple documents into one
coherent summary.

○​ Each doc’s key points are included, with references or citations.
●​ Priority: Major
●​ Status: Passed

Test ID: 21301

●​ Type: Integration Testing
●​ Objective: Verify Real-Time Collaboration Among Multiple Users
●​ Steps:

○​ Have two users (User A & User B) log in simultaneously to the same QD.
○​ User A uploads a new document, while User B observes.
○​ Confirm that User B sees the new document appear in near real-time (e.g.,

via websockets or poll).
○​ Both users initiate queries concurrently.

●​ Test Results:
○​ New documents appear quickly in the QD for all authorized users.
○​ Concurrent queries do not conflict or block each other.

●​ Priority: Major​

Test ID: 21401

●​ Type: Integration Testing
●​ Objective: Check Data Export Functionality for Compliance or Backup
●​ Steps:

○​ Log in as an admin user.
○​ Attempt to export a user’s entire QD (documents, embeddings, chat

history) as a structured file or archive.
○​ Verify that the system packages and encrypts data for secure download.

○​ Attempt partial export of specific documents only.
●​ Test Results:

○​ The system successfully bundles and exports all user data in a consistent
format.

○​ Partial exports work as intended, only including chosen items.
●​ Priority: Normal
●​ Status: Passed

Test ID: 21501

●​ Type: Integration Testing
●​ Objective: Validate Scheduled Maintenance Mode Integration
●​ Steps:

○​ Schedule a short maintenance window in the admin console.
○​ Observe how the system notifies active users (e.g., a banner or popup).
○​ Ensure that attempts to upload new documents or create new QDs are

blocked during the downtime.
○​ Check recovery steps when maintenance ends.

●​ Test Results:
○​ Users are pre-warned about upcoming downtime.
○​ All in-progress actions are either paused or gracefully aborted.
○​ Full functionality resumes automatically post-maintenance.

●​ Priority: Normal
●​ Staus: Passed

Test ID: 21601

●​ Type: Integration Testing
●​ Objective: Validate QD Re-Naming Across System Components
●​ Steps:

○​ Create a QD named “RegDocs2025.”
○​ Use the system’s rename function to change it to “RegDocs2026.”
○​ Verify that all references in the DB, vector index, object store, and logs

update accordingly.
○​ Confirm that the chat interface also references the updated name.

●​ Test Results:
○​ The new QD name is consistently reflected across all integrated services.
○​ No stale references or naming mismatches remain.

●​ Priority: Normal
●​ Status: Passed

Test ID: 30101

●​ Type: User Acceptance Testing
●​ Objective: Analyze contextual/domain relevance of responses
●​ Steps:

○​ Select a group of regulatory professionals
○​ Login to SVQ.ai with provided credentials
○​ Create a Query Datasource
○​ Upload sample regulatory documents
○​ Switch to chat with Query Datasource page
○​ Enter queries, only previously known to the candidate, related to the

uploaded documents
○​ Receive and review response generated by the system
○​ Evaluate response accuracy and provide feedback on relevance and clarity
○​ Submit feedback on an associated survey form

●​ Test Results:
○​ Query responses are contextually accurate and relevant to the uploaded

document.
○​ Users feel confident in using SVQ.ai for regulatory document analysis.

●​ Priority: Major
●​ Status: Passed

Test ID: 30201

●​ Type: User Acceptance Testing
●​ Objective: Confirm Ease of Onboarding for New Users
●​ Steps:

○​ Provide an onboarding user with credentials and minimal instructions.
○​ Have them create an account, log in, and upload a small document to a

newly created QD.
○​ Observe user interactions and note any confusion points.
○​ Collect feedback on the user’s initial impression.​

●​ Test Results:

○​ The user can intuitively register, log in, and upload documents.
○​ Any confusion points are minor and easily resolved by in-app tooltips or

messages.
●​ Priority: Normal
●​ Status: Passed

Test ID: 30301

●​ Type: User Acceptance Testing

●​ Objective: Validate Clear Error Messaging for Non-Technical Users
●​ Steps:

○​ Introduce a non-technical user to SVQ.ai.
○​ Simulate typical errors (e.g., invalid file upload, incorrect credentials).
○​ Observe whether they understand the error messages without assistance.
○​ Collect feedback on the clarity and usefulness of each message.

●​ Test Results:
○​ Error messages are user-friendly, avoiding overly technical jargon.
○​ Users can self-correct their actions based on the guidance provided.

●​ Priority: Normal
●​ Status: Passed

Test ID: 40101
●​ Type: Performance Testing
●​ Objective: Analyze systems performance under multiple concurrent requests for

query responses
●​ Steps:

○​ Prepare test environment with multiple simulated users using Selenium
○​ Select a Query Datasource containing multiple files
○​ Simultaneously send multiple query requests from different users (e.g.,

50–100 concurrent requests)
○​ Measure response times for each request and log delays, if any
○​ Increase concurrency levels gradually (e.g., 200, 500, 1000 requests) to

identify system limits
○​ Introduce variations in query complexity (short vs. long queries) to test

system adaptability
○​ Observe WebSocket performance to ensure real-time streaming remains

stable under load
○​ Analyze results and determine if system meets required performance

benchmarks​

●​ Test Results:
○​ The system handles a high number of concurrent queries with minimal

latency
○​ No significant system crashes, timeouts, or degraded functionality
○​ WebSocket connections remain stable for real-time response streaming

●​ Priority: Major
●​ Status: Passed

Test ID: 40201

●​ Type: Performance Testing
●​ Objective: Measure Latency in Retrieval-Augmented Generation with Large QD
●​ Steps:

○​ Upload multiple large documents (e.g., 1,000+ pages total) into a single
QD.

○​ Query the QD with complex questions requiring multiple document
references.

○​ Measure end-to-end latency from query submission to final response.
○​ Repeat with concurrent queries from multiple users.

●​ Test Results:
○​ The system maintains acceptable response times even with large

documents.
○​ No excessive memory usage or timeouts.

●​ Priority: Major
●​ Status: Passed

Test ID: 40301

●​ Type: Performance Testing
●​ Objective: Evaluate RAG Pipeline Under Sustained Usage
●​ Steps:

○​ Simulate a continuous load of queries over a 12-hour period using a tool
like JMeter.

○​ Generate queries of varying complexity, referencing different QDs.
○​ Track response time, error rates, and serverless function invocations.
○​ Identify any trends in performance degradation.

●​ Test Results:
○​ System remains stable and responsive under prolonged load.
○​ No memory leaks or large spikes in function errors over time.

●​ Priority: Major
●​ Status: Passed

Test ID: 40401

●​ Type: Performance Testing
●​ Objective: Benchmark S3 Document Upload and Download Speeds
●​ Steps:

○​ Use a set of files (small, medium, large) to upload in batch.
○​ Measure the average upload time per file.
○​ Immediately download the same files (authorized user) and measure

average download time.

○​ Repeat at different times of day to account for network variability.
●​ Test Results:

○​ Upload/download times remain within acceptable thresholds for each file
size.

○​ No significant or unexplained throughput drops.
●​ Priority: Minor
●​ Status: Passed

Test ID: 40501
●​ Type: Performance Testing
●​ Objective: Evaluate the Efficiency of Chunking and Embedding Large

Documents
●​ Steps:

○​ Upload a large document (e.g., a 500+ page pdf) to a QD
○​ Measure preprocessing time for document chunking
○​ Verify the number of chunks generated and their consistency
○​ Process embeddings for all chunks and record embedding generation time
○​ Store embeddings in the vector database and measure database write

latency
○​ Query the document and check retrieval speed for relevant embeddings
○​ Repeat with increasing document sizes to identify potential performance

bottlenecks.
●​ Test Results:

○​ Chunking and embedding complete within an acceptable time frame.
○​ Querying remains fast, even for large documents.
○​ No significant slowdowns, crashes, or resource exhaustion.

●​ Priority: Major
●​ Status: Passed

Test ID: 50101

●​ Type: Security Testing
●​ Objective: User’s Documents are auth-protected
●​ Steps:

○​ Upload a document to a selected Query Datasource
○​ Verify successful uploading of document to correct s3 bucket
○​ Switch to a different user
○​ Access S3 bucket (URL) from a different authenticated user using

Selenium web scraping to execute javascript to fetch from bucket url
○​ Notify user of Internal Server Error 500–do not notify user of

unauthorized access
○​ Switch to a correct owner

○​ Redo bucket fetch with Selenium bot
○​ Notify user of Status OK 200

●​ Test Results:
○​ System maintains user-authenticated access to buckets
○​ If a bucket access is unauthenticated, response is masked with an Internal

Server Error to hide existence of bucket
●​ Priority: Major
●​ Status: Passed

Test ID: 50201

●​ Type: Security Testing
●​ Objective: Users’ Documents are encrypted successfully
●​ Steps:

○​ Upload document for an authenticated user, and a selected QD
○​ Use authenticated user to redownload uploaded document
○​ View document content and expect to be encrypted
○​ Fetch user symmetric key from the key management system
○​ Decrypt document with symmetric key
○​ View document and review content

●​ Test Results:
○​ System successfully encrypts documents with users’s symmetric keys

before uploading to an object store
○​ Users’ symmetric keys successfully decrypt object content

●​ Priority: Major
●​ Status: Passed

Test ID: 50301

●​ Type: Security Testing
●​ Objective: Verify SQL Injection Protections in QD Queries
●​ Steps:

○​ Log in with a valid user and open a QD chat.
○​ Enter malicious payloads resembling SQL injection (e.g., '; DROP TABLE

users; --).
○​ Observe how the system handles the input.
○​ Check logs for any suspicious query attempts.

●​ Test Results:
○​ The system properly sanitizes or escapes user input, preventing SQL

injection.
○​ Any suspicious activity is logged without harming database integrity.

●​ Priority: Major

●​ Status: Passed

Test ID: 50401

●​ Type: Security Testing
●​ Objective: Test Role-Based Access Control (RBAC)
●​ Steps:

○​ Assign “Regular User” role to one account and “Admin” role to another.
○​ Attempt to perform admin-level functions (e.g., forced key rotation) from

the “Regular User” account.
○​ Confirm the action is denied.
○​ Sign in with the “Admin” account and retry the same action.

●​ Test Results:
○​ Regular users cannot perform restricted admin functions.
○​ Admin account successfully executes the action.

●​ Priority: Major
●​ Status: Passed

Test ID: 50501

●​ Type: Security Testing
●​ Objective: Validate Keycloak Token Expiration and Refresh Flow
●​ Steps:

○​ Log in to SVQ.ai with a short token expiration set in Keycloak (e.g., 5
minutes).

○​ Keep the browser session active, performing normal queries.
○​ After the token expires, attempt another chat query.
○​ Observe whether the system automatically refreshes the token or prompts

re-authentication.
●​ Test Results:

○​ Expired tokens are invalidated.
○​ The system either seamlessly refreshes the token or redirects the user to

log in again.
●​ Priority: Normal
●​ Status: Passed

Test ID: 50601

●​ Type: Security Testing
●​ Objective: Validate Data Isolation in Multi-Tenant Architecture
●​ Steps:

○​ Create two different user accounts (User A and User B).

○​ Each user creates a QD and uploads unique documents.
○​ Login as User A and try to access or query documents from User B’s QD.
○​ Observe the system’s response and any logs.

●​ Test Results:
○​ User A cannot see or query documents from User B’s QD.
○​ No data leakage or unauthorized cross-tenant access.

●​ Priority: Critical
●​ Status: Passed

Test ID: 60101
●​ Type: Usability Testing
●​ Objective: Ensure Accessibility and Responsiveness of SVQ.ai's User Interface
●​ Steps:

○​ Access SVQ.ai on multiple devices (desktop, tablet, mobile) to assess
responsiveness

○​ Verify that the interface adapts properly to different screen sizes without
layout issues

○​ Verify that text is responsive to screen sizes
○​ Verify static images scale resolution to adapt to screen size
○​ Test the platform using screen readers and assistive technologies for

accessibility compliance
○​ Confirm that alternative text is present for non-text content (e.g., icons,

images)
○​ Validate that keyboard navigation functions correctly across all interactive

components
●​ Test Results: SVQ.ai interface remains fully accessible, responsive, and adheres

to accessibility best practices.
●​ Priority: Normal
●​ Status: Passed

Test ID: 60201

●​ Type: Usability Testing
●​ Objective: Evaluate the Intuitiveness of the Query Datasource Flow
●​ Steps:

○​ Shortlist candidates to interact with SVQ.ai without any prior
guidance/exposure to the system

○​ Login to SVQ.ai for each candidate and navigate to the dashboard.
○​ Locate the option to create a new Query Datasource.
○​ Upload a set of documents and verify that they are processed without

errors.
○​ Edit an existing Query Datasource by adding or removing files.

○​ Delete a Query Datasource and confirm that it no longer appears in the
dashboard.

○​ Assess if system messages, tooltips, and UI prompts guide users
effectively.

○​ Assess if candidates can successfully complete the flow without oversight
●​ Test Results: Users can seamlessly create, manage, and delete Query Datasources

without confusion or assistance
●​ Priority: Normal
●​ Status: Passed

Test ID: 60301

●​ Type: Usability Testing
●​ Objective: Verify Clarity of System Tooltips and Tutorials
●​ Steps:

○​ Invite a small group of first-time users to explore the platform.
○​ Observe if they notice and use tooltips or tutorials.
○​ Gather feedback on whether the explanations were sufficient or confusing.
○​ Measure time taken before they independently upload documents and

query them.
●​ Test Results:

○​ Users rely on tooltips/tutorials to learn the system quickly.
○​ Feedback indicates that tutorials are neither too verbose nor too sparse.

●​ Priority: Normal
●​ Status: Passed

Test ID: 60401

●​ Type: Usability Testing
●​ Objective: Assess Workflow for Chat Interface Customization
●​ Steps:

○​ Present users with a settings page that allows customizing chat
background color, font size, or notification preferences.

○​ Observe if users can easily locate and modify these preferences.
○​ Verify that changes reflect immediately in the chat interface.

●​ Test Results:
○​ Users can intuitively personalize the chat settings.
○​ No confusion or searching for hidden settings.

●​ Priority: Low
●​ Status: Passed

Test ID: 60501

●​ Type: Usability Testing
●​ Objective: Evaluate Grouping Documents into a Single QD
●​ Steps:

○​ Have users create multiple QDs with different sets of documents (e.g.,
regulatory docs, code repos, textbooks).

○​ Guide them to merge or group selected documents into one QD.
○​ Record any difficulty or confusion about how grouping affects future

queries.
●​ Test Results:

○​ Users easily understand the grouping function and can combine relevant
documents logically.

○​ Queries reference all merged documents in the new QD.
●​ Priority: Normal
●​ Status: Passed

Test ID: 70101
●​ Type: Compatibility Testing
●​ Objective: Ensure SVQ.ai Web Client functions properly across different web

browsers
●​ Steps:

○​ Open SVQ.ai on multiple web browsers (e.g., Chrome, Firefox, Safari,
Edge)

○​ Verify that the platform loads correctly and maintains full functionality in
each browser

○​ Test key features such as user authentication, document upload, and
querying a datasource

○​ Identify and document any inconsistencies or browser-specific issues.
●​ Test Results: SVQ.ai operates smoothly across all major web browsers,

maintaining consistent performance and usability
●​ Priority: Minor
●​ Status: Passed

Test ID: 70201

●​ Type: Compatibility Testing
●​ Objective: Validate Responsiveness on Older Mobile Devices
●​ Steps:

○​ Use device emulators for older Android/iOS versions.
○​ Access SVQ.ai, log in, and attempt core operations (document upload,

chat).
○​ Note any layout issues or performance lags.

○​ Record any device-specific or OS-specific errors.
●​ Test Results:

○​ SVQ.ai remains usable (though potentially slower) on older devices.
○​ No major UI breakage or unstoppable crashes.

●​ Priority: Minor
●​ Status: Passed

Test ID: 70301

●​ Type: Compatibility Testing
●​ Objective: Validate Integration with Different S3-Compatible Storage Providers
●​ Steps:

○​ Switch the object store connector from AWS S3 to another S3-compatible
service (e.g., MinIO).

○​ Upload a document and ensure it is encrypted and stored.
○​ Download the same document to confirm data integrity.
○​ Check logs for any compatibility issues or warnings.

●​ Test Results:
○​ The system seamlessly supports multiple S3-compatible providers.
○​ No data corruption or unexpected errors occur.

●​ Priority: Normal
●​ Status: Passed​

​

Test ID: 70401

●​ Type: Compatibility Testing​
Objective: Confirm Behavior with Different Keycloak Versions​
Steps:

●​ Deploy different Keycloak versions (e.g., older stable vs. newest release).
●​ Perform standard authentication flows (login, logout, token refresh).
●​ Document any version-specific issues (e.g., changed endpoints, deprecations).​

Test Results:
●​ SVQ.ai’s authentication layer remains stable across Keycloak versions.
●​ Minimal code changes are needed to maintain compatibility.​

Priority: Minor
●​ Status: Passed

Test ID: 70501

●​ Type: Compatibility Testing

●​ Objective: Confirm Cross-Platform Behavior of the Chat UI (Desktop vs. Mobile
Browsers)

●​ Steps:
○​ Access the Chat UI from a desktop browser (Chrome/Firefox/Edge) and

test queries.
○​ Switch to a mobile browser and repeat typical tasks (upload doc, query

doc).
○​ Compare performance, layout, and feature availability.
○​ Document any discovered inconsistencies.

●​ Test Results:
○​ Core functionality (upload, chat, referencing) works similarly across

devices.
○​ Minor UI differences are acceptable, but no blocking issues occur.

●​ Priority: Norma
●​ Status: Passed​

5.3.​ RAG Benchmarks

5.3.1.​ Testing the RAG model

An important part of testing our system is being able to benchmark [9] and
evaluate the RAG model that we are using. In order to do so, we have devised a
testbench which includes one hundred questions, alongside four metrics that allow
us to evaluate the responses to those questions. This section will discuss the types
of questions included in our benchmark, how they were generated, and then
finally will establish the four metrics being used.

5.3.2.​ Types of Questions in the Testbench

The RAG model has to respond to any question that is asked to it; however, the
RAG model may perform better at answering some questions than others.
Therefore, we decided to proceed by splitting our questions into four different
question-types. The four types can be seen in the table below. In the table, the
term ‘chunk’ refers to a part of the text retrieved by the RAG model.

Question Type Description Information
Distribution

Examples Failure Mode No. of
Info
Chunks

Info
Consistency

Ratio

Single-Source
Questions

Questions with
answers that are
found in one
specific chunk.

Information
exists in one
place.

Who
discovered
penicillin?

What is the
capital of
France?

Failure to retrieve
the correct chunk or
confusion with
irrelevant chunks.

1 TRUE 40

Multi-Source
Questions

Questions that
require
information to be
aggregated or
linked across
multiple chunks.

Information is
scattered
across multiple
chunks.

Which
company
acquired
Instagram and
when?

Who invented
the telephone
and how did
it evolve?

Failure to connect or
aggregate
information from
multiple chunks.

Failure to retrieve
multiple relevant
chunks.

≥2 TRUE 40

Conflicting-
Source
Questions

Questions with
contradictory
information across
chunks.

Conflicting or
contradictory
data in
different
chunks.

What year
was Pluto
classified as a
dwarf planet?

Is the Earth
flat or round?

Model picks one
side of the
contradiction
arbitrarily, without
acknowledging the
conflict.

≥2 FALSE 10

No-Source
Questions

Questions with no
available
information or
subjective
opinions.

No relevant
data in any
chunk or
contains
misinformation

Who was the
75th
President of
the US?

What is the
best
smartphone?

Did Einstein
win a Nobel
Prize for
Relativity?

Model hallucinates
an answer, fails to
reject or states that
there is no
information.

0 - 10

Each question type has a distinct failure mode and the diversity within these four
question types will be able to sufficiently test the ability of our RAG model.
Additionally, the distribution of these questions should not be equal because the
distribution should replicate real world conditions. For that reason, we have
picked the ratio above. Using these question types, we have established a skeleton
that can be used to generate a structured benchmark allowing us to test different
failure modes within our RAG system.

5.3.3.​ Generating a Testbench

In order to generate questions, we decided to use a one thousand page Canadian
aviation regulation document inline with our goal of establishing SVQ.ai as an
effective tool to interact with regulatory documents. The nature of regulatory
documents means that there would be no conflicting-source questions, meaning
we would have to redistribute the question type as seen in the table below.
Additionally, in order to be able to evaluate the testbench effectively, we want to
establish a ground-truth. Given the nature of the document, its length and the
different question types, it is difficult to have an absolute ground-truth; therefore,
when generating questions, we try to get as close to a ground-truth as possible.
The difficulty in finding the ground truth can be highlighted with the following
question: ‘What regulations must be kept in mind when starting an air charter
company in Canada?’. This multi-source question can be answered from the
aspect of business regulations, aviation regulations, and safety regulations.
Choosing what content to include as a response to this question is somewhat
subjective, and so defining a ground-truth is difficult. Additionally, each aspect
would have to be searched for in a one thousand page document manually in order
to find the absolute ground-truth, which would take far too long for a hundred
questions. Therefore, we have aided the process using LLMs in a way that will be
explained further for each question type.

Question Type Ratio

Single-Source Questions 40

Multi-Source Questions 50

No-Source Questions 10

Generating Single-Source Questions:
In order to generate single-source questions, we split the original document into
smaller chunks, feeding a random chunk to the LLM and asking it to come up
with very specific, factual questions whose answer is found only within a single
chunk. Alongside the question, we also asked the LLM to reference the exact part

of the document that includes the answer to the question. This part will be used in
our metrics as the ground-truth. Additionally, we made the LLM generate a
sample answer to get an idea of what we were looking for. It is important to note
that the answer does not have to match exactly what the LLM comes up with in
that stage; however, it is very important that the RAG model is able to retrieve the
part of the document used as a reference in this part as it acts as a ground-truth for
our model. This was done to automatically generate forty questions, after which
we manually checked to make sure that they were single-source questions, the
questions were answered by the references, and that the referenced text actually
exists in the original document.

Generating No-Source Questions:
A similar approach was used to generate no-source questions. The LLM was also
fed with a random chunk; however, this time it was asked to generate either
opinion based questions, trick questions or questions that are based on fake
information that looks similar to what is in the chunk. For this part, the references
were empty since the answer does not exist, and the expected answers highlight
that the question cannot be answered based on the information in the document.
Once again, the generated questions were manually checked.

Generating Multi-Source Questions:
In order to generate multi-source questions, we attempted to generate question
topics, semantically search the document, and then ask the LLM to come up with
questions based on the search results; however, we saw little success with this
approach. The LLM was generating improper questions, with it frequently
generating single-source questions rather than multi-source ones. Moreover, we
had difficulty checking whether the answer to the questions also exists
somewhere apart from the chunks that were provided to the LLM. For this reason,
we decided to take a different approach.

We decided to aggregate single-source questions in a random order to create a
two-part multi-source question. An example of such a question is: ‘According to
the Canadian Aviation Regulations, how many passengers can a holder of a pilot
permit, an ultra-light aeroplane endorsed with a passenger-carrying rating carry on
board an ultra-light aeroplane? Additionally, To what operations does Subpart 1,
Foreign Air Operations apply in Canada according to section 701.01?’. We did
this for fifty questions, storing the answers and references similar to the other
question-types. Additionally, we aggregated between 2-6 single-source questions
in order to generate multi-source questions. The entire testbench that we created
can be found under our github repo.

By using this approach, we are able to see whether the RAG model is able to
retrieve relevant chunks from different parts of the document, and whether it is
able to put these together to form a complete and coherent answer. However, this
approach fails to test how the RAG model performs when the parts of the
document needed to be searched are not directly apparent as with the example
query: ‘What regulations must be kept in mind when starting an air charter
company in Canada?’. Including such questions in our testbench would weaken
our use of ground-truth references which will limit us in evaluating the responses
effectively. Given that a compromise is made here, this must be kept in mind
during evaluation and this sort of edge-case should be checked manually during
testing.

5.3.4.​ Evaluation Metrics

In order to create an evaluation criteria to use alongside our testbench, we have
followed [1] closely; however, we saw the lack of a ground-truth in their approach
to be a major limitation and therefore, have decided to extend upon their research.
Although we use the same metrics, our calculations are slightly different due to
the fact that we have decided to use a ground-truth as a part of our evaluation.
These differences will be explained in more detail alongside the method of
calculation for each of our four criteria.

Context Relevance:
Context relevance is defined as the length of overlap between the ground-truth
references and the total length of all the chunks retrieved by the RAG model. This
relationship has been expressed in the equation below, where is the length of 𝐷| |
the set of chunks retrieved by the RAG model, is the index of the chunk within 𝑖
the set , and is the ground-truth. 𝐷 𝐺

 𝑖=1

𝐷| |

∑ 𝐿𝑒𝑛(𝐺 ∩ 𝑑
𝑖
)

𝑖=1

𝐷| |

∑ 𝐿𝑒𝑛(𝑑
𝑖
)

This metric is a number between zero and one. A zero would mean that nothing
that the RAG model has retrieved overlaps with the ground-truth, highlighting its
inability to retrieve relevant information. Whilst, a context relevance score of one
would mean that everything that is retrieved matches with the ground-truth.
Although a score of one is ideal, modern RAG solutions are highly unlikely to

achieve this. Retrieved documents are usually quite long relative to the
ground-truth, and additionally, RAG models tend to retrieve multiple documents.
Therefore, it can be expected that the models will achieve a score closer to zero
than one; however, a higher score indicates better retrieval capabilities.

In [1], the context relevance is calculated by using an LLM to identify relevant
pieces of information within the set of retrieved chunks. However, this approach
is limited since it is possible there is additional relevant information outside of the
chunks that are retrieved. In this scenario, the context relevance score calculated
in [1] may be high despite the fact that the retriever did not retrieve all relevant
chunks. Using our ground-truth approach, we have eliminated this problem, and
are able to calculate context relevance with all relevant tokens in mind.

Context Utilization:
To measure how much of the retrieved chunks the generator is using to come up
with the answer, we use the context utilization metric. In order to determine what
the generator uses to come up with an answer, we prompt the LLM to highlight
the part of the retrieved chunks it uses. As explained in [1], this approach aligns
well with human judgement when using a chain of thought model. Using this,
context utilization is defined as the length of utilized text divided by the length of
the retrieved documents. This is explained in the equation below, where is the 𝑈

𝑖

text that the generator utilizes from chunk . 𝑖

 𝑖=1

𝐷| |

∑ 𝐿𝑒𝑛(𝑈
𝑖
)

𝑖=1

𝐷| |

∑ 𝐿𝑒𝑛(𝑑
𝑖
)

Once again, this metric gives us a score between zero and one where zero
corresponds to low utilization of the retrieved information and one corresponds to
a complete utilization. Similar to context relevance, it is highly unlikely that
modern RAG solutions will achieve a utilization of one; however, the higher they
are able to score, the more efficient their retrieval. For this metric, our calculation
is identical to that seen in [1].

Completeness:
Completeness is defined as the length of the overlap between the ground-truth and
the utilized text divided by the length of the ground truth. This is also explained in
the equation below:

 𝑖=1

𝐷| |

∑ 𝐿𝑒𝑛(𝐺 ∩ 𝑈
𝑖
)

𝐿𝑒𝑛(𝐺)

This metric also lies between zero and one, with a score of zero meaning that the
answer generated does not use any information from the ground-truth, and a score
of one meaning that the answer generated uses everything from the ground-truth.
It is important that this metric is high because it ensures that the answer does not
miss out on any relevant and important details.

Similar to context relevance, unlike [1], we use a ground-truth in the calculation
in place of having an LLM identify relevant pieces of information within the
chunk. As mentioned before, this helps with accuracy because it also includes
cases where there is relevant information outside of what is retrieved and labelled
as relevant by the LLM.

Adherence:
The adherence metric measures whether or not the RAG model answers with
faithfulness, groundedness and attribution. In order to calculate this metric, the
RAG model’s response was fed to an LLM alongside the relevant context, and the
LLM was prompted to judge the RAG model’s response. The adherence score is
binary with a value of zero meaning the RAG model is not adherent and a value
of one meaning that the RAG model is adherent. An adherent RAG model means
the model produces responses that align with the truth and correctly reference the
utilized information without fabricating or hallucinating details. As explained in
[1], chain of thought LLMs are able to make similar judgements to humans;
therefore, the scores given by the LLMs can for the most part be trusted.

Overall, these four metrics allow us to evaluate different stages of the RAG
pipeline, and weaknesses in certain metrics point to different stages in the
pipeline. Overall, it is important to score well in all four metrics; however, due to
the fact that SVQ.ai is being designed for mission critical industries like aviation
regulations, adherence and completeness are very important. The table below
highlights the different parts of the pipeline that these metrics try to quantify,
allowing us to understand the direction improvements need to take place in.

Metric Purpose of Metric Pipeline Stage

Context relevance Captures the accuracy of the
retrieval process

Indexing and retrieval

Context
utilization

Checks for the efficiency of
retrieval and utilization by the
generator

Retrieval and generation

Completeness Ensures the response is thorough
and accurate based on the
ground-truth

Retrieval and generation

Adherence Highlights hallucinations or
inaccuracies in the response

Generation

Although we have developed a rigorous testbench and quantifiable metrics for
evaluation, it is very important to keep the limitations of this methodology, which
were highlighted above, in mind when referring to these metrics. Additionally, the
metrics should be looked at separately for each question-type, because good
performance across one question type does not ensure good performance across
the others.

6.​ Maintenance Plan and Details
Maintaining the SVQ.ai platform involves a multi-faceted approach focusing on proactive
monitoring, regular updates, data integrity, security, and user support. This plan ensures the
system remains reliable, secure, and performs optimally as it evolves.

6.1.​ Routine Monitoring and Health Checks

Continuous monitoring of serverless function performance—tracking execution time,
error rates, and resource utilization via AWS CloudWatch (or a similar service)—will be
implemented to proactively identify and address potential bottlenecks or failures.
Automated alerts will notify the development team of critical issues for prompt response,
while regular checks on Turso database availability, performance, and storage capacity
will ensure that our data layer remains robust. Additionally, we will monitor the health
and response times of the Keycloak authentication service to maintain secure,
uninterrupted user access.

6.2.​ Software and Infrastructure Updates

All dependencies including frontend libraries such as React and ShadCN, backend
libraries, and serverless runtimes; will be regularly reviewed and updated to patch
vulnerabilities and incorporate improvements. Updates to core infrastructure components
(e.g., Lambda runtimes, Turso DB versions, and the Keycloak server) will be scheduled
during low-traffic periods to minimize user disruption. We will strive for backward
compatibility in every update and perform comprehensive regression testing in a staging
environment before deploying to production. The performance and relevance of our RAG
models—both embedding and generation LLMs will be periodically benchmarked, with
updates or fine-tuning applied as needed to reflect advances in the field.

6.3.​ Data Management and Integrity

To safeguard user data, automated backups of Turso tenants and configuration data will
be taken every seven days and stored securely; these backups will be tested periodically
for restorability. We will perform regular integrity checks on vector embeddings and the
underlying knowledge graph, and manage AES encryption keys for document storage
through secure procedures, including scheduled key rotations as validated in our testing
protocols.

6.4.​ Security Maintenance

Security audits and vulnerability scans of both codebase and infrastructure will be
conducted on a regular basis, supplemented by periodic penetration testing to uncover
any weaknesses. Security patches for operating systems, libraries, and services will be
applied promptly in accordance with their severity. Access logs and audit trails captured
via Keycloak and our application logging framework will be reviewed continuously to
detect and investigate any suspicious activity.

6.5.​ Issue Resolution and Support

We will maintain a clear process for reporting, tracking (via YouTrack), prioritizing, and
resolving bugs to ensure that issues are handled efficiently. Our user support system;
including an up-to-date FAQ and knowledge base will incorporate information on new
features, common pitfalls, and troubleshooting steps.

6.6.​ User Communication

For any planned maintenance requiring significant downtime, users will receive at least
one day’s advance notice, and efforts will be made to keep downtime to an absolute

minimum. A maintenance mode validated through testing will be employed to inform
users and prevent disruptions during updates. Every release will be accompanied by
detailed notes describing new features, improvements, and bug fixes.

7.​ Other Project Elements

7.1.​ Consideration of Various Factors in Engineering Design
In the design and development of SVQ.ai, several critical factors must be considered to
ensure the system is not only functional but also responsible, sustainable, and aligned
with societal and environmental needs. These factors include economic, environmental,
social, political, ethical, safety, and sustainability considerations. Each of these plays a
vital role in shaping the system's design, implementation, and long-term impact.

7.1.1.​ Economic Factors​

Economic considerations were central to the design of SVQ.ai, as the platform
needed to balance cost-effectiveness with high performance. To minimize
operational costs, the system leverages a serverless architecture powered by AWS
[10] Lambda, which dynamically scales resources based on demand, eliminating
the need for continuously running servers. This approach significantly reduces
infrastructure expenses while maintaining scalability. For data storage, SVQ.ai
uses Turso, a distributed SQLite database, which provides cost-efficient,
low-latency storage with built-in multi-tenant support. Additionally, the platform
relies on open-source models and libraries, such as Hugging Face Transformers
for LLM integration [11] and FAISS (Facebook AI Similarity Search) [12] for

vector embeddings, to minimize development and licensing costs. By optimizing
resource utilization and leveraging cost-effective technologies, SVQ.ai ensures
financial sustainability without compromising performance.

7.1.2.​ Environmental Factors
Environmental sustainability was a key consideration in the design of SVQ.ai.
The platform’s serverless architecture reduces energy consumption by
automatically scaling resources up or down based on user demand, avoiding the
energy waste associated with idle servers. Furthermore, the use of Turso’s
edge-hosted databases ensures data is stored and processed closer to users,
reducing the carbon footprint associated with data transmission. The platform also
employs efficient chunking and embedding techniques to minimize computational
overhead, further contributing to lower energy usage. By prioritizing

environmentally conscious design choices, SVQ.ai aligns with global efforts to
reduce the environmental impact of technology.

7.1.3.​ Social Factors

SVQ.ai was designed with a strong focus on social impact, particularly in
enhancing accessibility and usability for professionals dealing with complex
regulatory documents. The platform’s intuitive chatbot interface, built using
React + Typescript front-end and integration with ShadCN component libraries
make advanced document analysis accessible to a broader user base. This helps
non-technical individuals and smaller organizations—often without dedicated
legal/IT departments, gain insights from regulatory documents.Additionally, the
platform’s back-referencing feature provides explicit citations linking answers
back to the original text segments stored in Turso. This transparency empowers
users, regardless of their background to trust and verify the system’s answers,
fostering higher confidence in the information provided.
The platform also provides Document Grouping into QD (Query Datasource). By
allowing users to upload, group, and query multiple documents as a single data
source, SVQ.ai encourages collaboration across teams and communities. This
functionality can be particularly transformative for grassroots organizations or
nonprofits that need coherent, quick access to policy or legal references.

7.1.4.​ Political Factors
Political considerations, particularly compliance with data privacy and regulatory
standards, were critical in the design of SVQ.ai. The platform adheres to stringent
data protection regulations, such as GDPR, by implementing robust encryption
using AES-256 for securing user documents both at rest and in transit. The
database-per-user approach ensures data isolation, minimizing the risk of
unauthorized access. Additionally, SVQ.ai integrates Keycloak, an
OIDC-compliant authentication service, to enforce strict access controls and
ensure compliance with industry standards. These measures not only protect
sensitive user data but also align with global regulatory requirements, fostering
trust among users and stakeholders.

7.1.5.​ Ethical Factors
Ethical considerations were paramount in the development of SVQ.ai. The
platform prioritizes accuracy and reliability by leveraging Retrieval-Augmented
Generation (RAG) technology, which grounds responses in the source documents,
reducing the risk of misinformation or biased outputs. For Bias Monitoring the
RAG service includes processes that compare AI-generated answers with the
original embeddings to detect significant divergences or questionable content.

This helps reduce unethical biases or misinformation by flagging or refusing to
provide answers when the system lacks sufficient context.To ensure transparency,
SVQ.ai includes disclaimers when documents do not fully answer a query,
promoting ethical responsibility in AI interactions. The platform also employs
AES encryption at Rest and in Transit and database isolation to protect user data,
reflecting ethical principles of user autonomy and confidentiality. AES-256
encryption is applied to all user-uploaded documents in object stores, and
TLS/HTTPS is enforced for data in transit.By adhering to these ethical guidelines,
SVQ.ai ensures responsible and trustworthy AI usage.

7.1.6.​ Safety Factors
SVQ.ai incorporates Disclaimers for Legal/Regulatory Advice. Since SVQ.ai
deals heavily with legal and regulatory documents, each response in the chatbot
interface may include a “non-expert system” disclaimer. This ensures users
understand that final decisions should involve professional judgment or legal
counsel. The platform also ensures Context Verification in Subsystem Services.
Subsystems responsible for chunking and embedding (e.g., a Document
Preprocessing Lambda) verify that uploaded files match the expected formats and
do not contain malicious content (such as script injections). This prevents the
distribution of harmful data through the system. Additionally, SVQ.ai integrates
Audit Trails in Keycloak. All user activities—logins, queries, file uploads—are
logged. In the event of misuse or potential incorrect interpretation of crucial
safety information, these audit trails help trace potential issues back to their
source, enabling a quick response.

7.1.7.​ Sustainability Factors

Sustainability was a key consideration in the long-term viability of SVQ.ai. The
platform ensures Long-Term Code Maintenance by building the front-end in
React + Typescript and orchestrating serverless functions with well-documented
APIs, SVQ.ai ensures that future developers can readily onboard, enhance
features, and fix bugs. This technical stability over time underpins the project’s
broader sustainability goals. Moreover the system also boasts Modular
Architecture for Incremental Upgrades. Each subsystem—like the RAG service,
the Keycloak authentication layer, and the embedding storage solution—can
evolve or be replaced independently without disrupting the rest of the platform.
This modularity allows for continuous adoption of more efficient or greener
technologies as they become available. Lastly, the system also integrates
Monitoring of Serverless Metrics. Tools like AWS CloudWatch or equivalent
services in other cloud platforms help track usage metrics, enabling dynamic

scaling rules. By right-sizing resources, SVQ.ai avoids both performance
bottlenecks and unnecessary wastage, ensuring sustainable resource allocation.

Factor Effect Level Effect

Economic 6 Moderate to High Impact: By using serverless
architectures and open-source tools, the platform
significantly reduces operational costs. This earns a
6 because cost savings are crucial at scale but
balanced against other priorities.

Environmental 5 Notable Impact: Serverless scaling and edge-hosted
databases lower energy consumption and carbon
footprint. Rated 7 due to the tangible yet not
all-encompassing benefits to sustainability.

Social 7 Significant Impact: An intuitive chatbot and
transparent references broaden access and trust for
users (including non-technical or smaller
organizations). A high rating of 8 reflects its crucial
role in user adoption.

Political 4 Low to Moderate Impact: Strong data-protection
compliance (GDPR, secure authentication) is
essential, but political influences are primarily
addressed through regulatory alignment. Given these
controlled risks, it’s rated 4.

Ethical 9 High Impact: Ensuring reliable, unbiased AI outputs
and proper user data protection is paramount. The 9
underscores how ethical considerations drive both
development and public acceptance.

Safety 8 Significant Impact: The platform includes
disclaimers for legal/regulatory content, checks for
malicious uploads, and maintains thorough audit
trails. These measures warrant an 8, reflecting a
strong focus on user safety.

Sustainability 6 Moderate to High Impact: Long-term code
maintenance, modular upgrades, and resource
monitoring enable enduring stability. A 6 rating
captures its importance, though it is somewhat
balanced by other design factors.

7.2.​ Ethics and Professional Responsibilities

The development and deployment of SVQ.ai, an AI-powered platform designed to
interact with complex and often sensitive documents, inherently carry significant ethical
considerations and professional responsibilities. As engineers and developers, the team
acknowledges the imperative to uphold the highest standards of integrity, accountability,
and care throughout the project lifecycle. Our commitment extends beyond mere
functionality to encompass the trustworthiness, fairness, and societal impact of the
system.

7.2.1.​ Upholding Data Privacy and Confidentiality

A primary professional responsibility lies in safeguarding the confidentiality and
privacy of user data. Given that users may upload sensitive regulatory, legal, or
proprietary documents, robust security measures are not just features but ethical
obligations. SVQ.ai is designed with a database-per-user architecture using Turso
to ensure strict data isolation. Furthermore, all uploaded documents are encrypted
using AES-256 both at rest in object storage and during transit, ensuring that user
data is protected from unauthorized access. Access control, managed via
Keycloak using OIDC standards, further reinforces this commitment by ensuring
only authenticated and authorized users can access their respective data and
functionalities.

7.2.2.​ Ensuring Accuracy, Reliability, and Transparency

Professionals using SVQ.ai rely on its outputs for potentially critical tasks;
therefore, ensuring the accuracy and reliability of the information provided is
paramount. The use of Retrieval-Augmented Generation (RAG) is a deliberate
choice aimed at grounding responses in the provided source documents, thereby
minimizing AI "hallucinations" and factual inaccuracies. A key feature supporting
reliability and ethical transparency is back-referencing, which links generated
responses directly to the specific sections of the source documents. This allows
users to verify the information themselves, fostering trust and enabling informed
judgment. We also recognize the responsibility to be transparent about the
system's limitations, incorporating disclaimers where appropriate, particularly
regarding interpretations that might constitute legal or expert advice.

7.2.3.​ Addressing Bias and Promoting Fairness

AI systems can inherit biases present in data or models. The team holds a
professional responsibility to proactively address and mitigate potential biases
within SVQ.ai to ensure fairness. While the RAG approach inherently focuses on

user-provided documents rather than broad pre-trained knowledge alone, ongoing
monitoring and evaluation are necessary. The benchmarking process developed
for the RAG model includes evaluating responses for adherence and accuracy,
which helps in identifying potential issues. Continuous efforts will be made to
refine the system to provide objective and impartial information retrieval and
generation based solely on the provided document context.

7.2.4.​ Professional Accountability and Continuous Improvement

While SVQ.ai is designed to be a powerful assistive tool, we maintain that it does
not replace professional judgment or expertise. Users retain ultimate
responsibility for how they interpret and utilize the information provided by the
system. Our professional responsibility includes clearly communicating the tool's
capabilities and limitations. Furthermore, the team is committed to continuous
improvement, not only in functionality but also in ethical practice. This involves
staying informed about evolving AI ethics standards, incorporating user feedback,
performing regular maintenance and security audits, and adhering to rigorous
testing protocols outlined in this report to ensure the system remains robust,
secure, and ethically aligned.

7.3.​ Judgements and Impacts to Various Contexts
The development of SVQ.ai required careful judgements balancing technical
capabilities, user needs, and broader contextual impacts. Evaluating these impacts
across economic, societal, environmental, and global contexts is crucial for
responsible innovation. The choices made in designing SVQ.ai reflect deliberate
considerations of these factors, aiming to maximize benefits while mitigating
potential risks.

7.3.1.​ Impact on Professional Workflows and Economic Contexts

SVQ.ai is anticipated to have a significant impact on professionals who
regularly engage with dense regulatory, legal, or technical documents. By
automating aspects of information retrieval and providing context-aware
answers through its RAG-powered chatbot interface, the platform can
drastically reduce the time spent on manual document review. This
efficiency gain represents a key economic impact, potentially lowering
operational costs for businesses and increasing productivity in fields like
compliance, law, and research. However, this also necessitates a
judgement about the workforce: while SVQ.ai is designed as an assistive

tool, widespread adoption could influence the nature of roles focused
purely on information retrieval. The B2C marketability focus also implies
a judgement aiming for broad accessibility, potentially impacting the
competitive landscape of regulatory technology tools.

7.3.2.​ Societal Impact and Information Accessibility

A core judgement driving SVQ.ai's development is the potential societal
benefit of making complex information more accessible. By simplifying
interaction with difficult texts, the platform could empower smaller
organizations, non-profits, or individuals who lack resources for extensive
legal or regulatory analysis. The inclusion of features like
back-referencing reflects a judgement prioritizing transparency and user
trust, which is vital for societal acceptance. Conversely, there's an
awareness of potential negative impacts. Over-reliance on the tool without
critical engagement, despite built-in safeguards like accuracy goals and
disclaimers, could lead to misinterpretations. Ensuring equitable access
and promoting digital literacy among users are necessary considerations to
maximize positive societal impact and mitigate risks.

7.3.3.​ Engineering Judgements and Their Consequences

Several key engineering judgements shape SVQ.ai's impact. The choice of
a serverless architecture was a judgement prioritizing scalability and
cost-effectiveness over potential complexities in managing distributed
functions. This impacts the economic viability and environmental
footprint (potentially lower energy use) but requires robust monitoring and
maintenance strategies. Implementing a multi-tenant, database-per-user
model with Turso was a critical judgement balancing cost against the
paramount need for data security and isolation. Similarly, adopting the
RAG architecture was a judgement favouring accuracy and grounding in
source material over potentially faster but less reliable generative
approaches, directly impacting the system's trustworthiness. Security
measures like AES encryption and Keycloak authentication represent
judgements to adhere to industry best practices, impacting usability
slightly but significantly bolstering security and user confidence.

7.3.4.​ Broader Environmental and Global Contexts

While specific design choices like serverless aim for efficiency, the team
acknowledges the broader environmental context: AI development and
operation contribute to global energy consumption. Continuous

optimization efforts are part of the engineering judgement to minimize this
footprint. In a global context, SVQ.ai could facilitate easier understanding
of international regulations or standards if applied to relevant documents.
However, factors like language support (tested for multi-language
documents in 11001) and varying data privacy laws globally require
ongoing judgement and adaptation for wider applicability.

7.4.​ Teamwork Details

7.4.1.​ Contributing and functioning effectively on the team

The development of SVQ.ai relied on strong collaboration and efficient
teamwork. By adopting an agile approach, the team maintained continuous
communication, iterative development cycles, and seamless integration of new
features. Project coordination was optimized through a structured workflow using
tools such as Youtrack for tracking progress, and GitHub for source code
management. Regular sync-up meetings facilitated progress reviews,
problem-solving, and collective decision-making, ensuring that every team
member's contributions were effectively incorporated. This dynamic and
well-organized approach enabled the team to stay aligned with SVQ.ai’s
objectives while fostering innovation and efficiency.

Rowaha: Rowaha played a critical role in designing, implementing and deploying
the SVQ.ai core server subsystem. His contributions include implementing robust
security measures, user session management, documents’ encryption and
multi-tenant database, hence safeguarding the application's integrity and user data.

Zahaab: Zahaab worked on the research, design, implementation and testing of
the SVQ.ai’s RAG model. He has worked on the implementation of the demo
model, the research and implementation of the testbench and evaluation criteria,
and also the testing of the initial demo model of the RAG system.

Yassin: Yassin was responsible for market research and analysis, including
researching potential customers and existing competitors. He was also responsible
for research and testing of the SVQ.ai’s RAG model.

Ghulam: Ghulam was responsible for the UI/UX design and frontend
implementation of the project. He created an intuitive user interface with
responsive design principles and a document interaction interface with specialized
components. He was also involved in RAG pipeline research and implementation.

Mehshid: Mehshid was responsible for the UX/UI design and frontend
implementation of the project. She was also responsible for all the Reports and
documentation of the project.

7.4.2.​ Helping creating a collaborative and inclusive environment

Throughout the project, our team nurtured a collaborative and inclusive
environment. We actively promoted open communication, frequently exchanging
ideas and offering constructive feedback. This approach not only supported
individual growth but also enhanced the project's development by incorporating
diverse perspectives.

Additionally, we emphasized knowledge sharing, with team members–based on
their expertise–leading training sessions on topics such as RAG, AI model
implementation, and frontend development frameworks. By fostering a culture of
mutual respect, active listening, and continuous learning, we created a space that
encouraged innovation, creativity, and the open exchange of ideas, ultimately
driving the project's success.

7.4.3.​ Taking lead role and sharing leadership on the team

Our team embraces a dynamic approach to leadership, encouraging each member
to take the lead in areas that align with their core strengths and interests. In this
project, Rowaha has assumed primary responsibility for developing the backend
architecture and managing repository maintenance. By streamlining backend
operations and coordinating updates, he ensures that the foundation of our system
remains stable and efficiently organized.

On the frontend, Mehshid and Ghulam are jointly responsible for designing and
implementing the user-facing components. While they collaborate to create a
seamless user experience, Mehshid also manages meeting minutes, recording key
decisions and discussions to keep the entire team aligned as well as preparing all
the reports.

Meanwhile, Zahaab and Yassin focus on the RAG model, taking the lead in
selecting the best approach and developing a test bench for comparing model
performances. Their work ensures the system remains both accurate and efficient,
driven by clear performance metrics.

All reports are a shared responsibility: each team member writes sections related
to their domain, while Rowaha oversees alignment to ensure that the information
is consistent and free of discrepancies. This model of distributed leadership
leverages each person’s strengths, promotes collective accountability, and bolsters
overall project cohesion.

7.4.4.​ Meeting objectives

The Smart Vector Query (SVQ) final report presents the development of a
sophisticated platform that harnesses Retrieval-Augmented Generation (RAG) to
simplify interaction with complex regulatory documents. This evaluation
examines the project’s achievement of its core objectives—drawing on system
architecture, implemented features, and rigorous testing protocols—to
demonstrate overall success.

Objective 1: Advanced Document Navigation & Querying​
SVQ fully realized its primary goal by implementing a cutting-edge RAG
pipeline, featuring intelligent chunking, embedding generation, knowledge graph
integration, and context-aware response generation. Through an intuitive chatbot
interface, users can engage in natural, conversational queries that seamlessly
access and interpret their documents.

Objective 2: High Accuracy and Reliability​
To ensure consistent precision, the RAG system was designed to ground every
response directly in source material, minimizing hallucinations. Transparency and
traceability were enhanced via back-referencing, enabling users to verify answers
against specific document sections. A comprehensive benchmarking framework
measuring Context Relevance, Completeness, and Adherence was established to
rigorously evaluate system performance.

Objective 3: Robust Security and Data Privacy​
Security underpins the SVQ design through a multi-tenant Turso architecture,
which enforces strict data isolation. Documents are protected with AES-256
encryption both at rest and in transit, while Keycloak configured with OIDC
standards manages secure access control. Dedicated security testing validated
these measures, confirming data confidentiality and regulated access.

Objective 4: Intuitive User Interface and Experience​
A modern, responsive web interface built with React, TypeScript, and the
ShadCN component library delivers a polished user experience. Clear usability

goals guided the design process, and planned usability testing will verify the
platform’s ease of navigation and the intuitiveness of its document-querying
features.

Objective 5: Scalable and Performant Architecture​
SVQ’s serverless backend enables dynamic resource scaling in response to
demand, while Turso’s edge-hosted databases ensure low-latency data access.
Performance testing under simulated concurrent loads and with large document
sets confirmed that the system meets predefined responsiveness and stability
benchmarks.

Objective 6: Long-Term Supportability and Maintainability​
A comprehensive documentation strategy and a detailed maintenance plan
underscore the platform’s future viability. Proactive monitoring, regular updates,
structured data management, ongoing security audits, and a robust user support
framework will facilitate effective long-term maintenance and continuous
improvement.

In conclusion, the evidence presented in this report demonstrates that the Smart
Vector Query project has substantially met its defined objectives. The team has
engineered a complex, RAG-powered platform that excels in security, usability,
performance, and maintainability, reflecting a comprehensive and successful
execution of the project’s goals.

7.4.5.​ New Knowledge Acquired and Applied

The Smart Vector Query (SVQ.ai) project demanded a significant expansion of
the team's technical skillset, requiring the acquisition and practical application of
knowledge across several cutting-edge domains. Foremost among these was the
deep dive into advanced Artificial Intelligence, particularly Retrieval-Augmented
Generation (RAG) methodologies. Team members gained expertise in the entire
RAG pipeline, including sophisticated document chunking strategies, the
generation and management of high-dimensional vector embeddings (utilizing
vector databases like Nano) , and leveraging Large Language Models (LLMs) for
generating contextually grounded responses. A crucial part of this involved
learning and applying novel techniques for benchmarking RAG systems,
establishing specific evaluation metrics such as Context Relevance, Context
Utilization, Completeness, and Adherence.Backend development necessitated
mastering modern cloud-native technologies. The team implemented a serverless
architecture, gaining practical experience in managing and orchestrating

individual functions. Designing a secure multi-tenant system involved learning
about distributed databases like Turso and implementing effective data isolation
strategies. Significant knowledge was acquired in Identity and Access
Management (IAM), specifically applying Keycloak, OpenID Connect (OIDC)
[8], and JWT standards to secure API endpoints and user sessions. Furthermore,
the team applied robust cryptographic practices, implementing AES-256
encryption to ensure the confidentiality of user documents.On the frontend, the
project involved applying knowledge of React and Typescript, along with modern
UI component libraries like ShadCN, to create a responsive, intuitive, and
aesthetically pleasing user interface. Effective state management techniques using
libraries such as MobX-Keystone were also implemented. Beyond specific
technologies, the team enhanced its understanding and application of
comprehensive software engineering practices. This included designing and
executing rigorous testing plans covering functional, integration, performance,
security, and usability aspects, utilizing version control systems like GitHub,
employing project management tools like Youtrack for coordination, and
integrating considerations for broader engineering design factors such as
economic viability, ethical implications, and long-term sustainability into the
development process.

8.​ Conclusion and Future Work
The SVQ.ai platform effectively demonstrates the power of combining RAG technology,
LLMs, and vector databases to transform how professionals interact with complex
documents. By prioritizing accuracy, reliability, security, and scalability, SVQ.ai provides
a robust solution for querying and extracting insights from regulatory, legal, and technical
documents. The platform's architecture, leveraging a client-server model with a serverless
backend and a React + TypeScript frontend, ensures both performance and a user-friendly
experience.

To further enhance SVQ.ai and expand its capabilities, the following future work
directions are identified:

1.​ Enhanced Query Understanding: Implement advanced Natural Language
Understanding (NLU) to improve the interpretation of complex and nuanced queries,
ensuring more precise and contextually relevant results.

2.​ Expanded Document Modalities: Extend the platform to support a broader range of
document formats beyond text, including tables, images, and charts, to provide a more
comprehensive information retrieval experience.

3.​ Proactive Personalization: Integrate user feedback mechanisms and behavior analysis to
personalize responses and recommendations, thereby increasing user engagement and
satisfaction.

4.​ Seamless Enterprise Integration: Develop APIs and connectors to facilitate smooth
integration with existing enterprise systems and workflows, enhancing the platform's
utility within organizational contexts.

5.​ Continuous RAG Optimization: Continuously refine the RAG models and underlying
algorithms to minimize hallucinations, improve response accuracy, and reduce latency,
ensuring SVQ.ai remains a cutting-edge solution for AI-driven document analysis.

6.​

9.​ Glossary
9.1.​ Definitions, acronyms, and abbreviations
LLM (Large Language Model): An AI-based model designed to understand, process,
and generate human-like text based on input data.

Retrieval-Augmented Generation (RAG): enhances AI text generation by retrieving
relevant information from external sources, ensuring more accurate and context-aware
responses.

Advanced Encryption Standard (AES): a symmetric encryption algorithm that secures
data using fixed key sizes. It encrypts data in blocks through multiple rounds of
substitution and permutation, ensuring strong security and efficiency.

OpenID Connect (OIDC): is an authentication protocol built on OAuth 2.0 that enables
secure user sign-in across applications. It provides identity verification through ID
tokens, allowing seamless and decentralized authentication.

Time to Interactive (TTI): a web performance metric that measures how long it takes
for a page to become fully interactive. It indicates when users can reliably interact with
the page without delays.

Multi-tenant architecture: a software model where a single application instance serves
multiple customers (tenants), each with isolated data and configurations.

Query Datasource (QD): a domain-specific term used to extensively refer to a collection
of documents for a user.

B2C (Business-to-Consumer): A commerce model where businesses sell products or
services directly to consumers.

9.2.​ Evaluation Criteria and Rating Scale

Criterion Sub-Criterion Brief Description Rating Scale (1-5)

Accuracy Document
Retrieval
Accuracy

How well the model
retrieves the most
relevant regulatory
documents or
sections.

1: Irrelevant documents
retrieved most of the
time.
2: Limited relevance.
3: Moderately relevant.
4: Mostly relevant
documents retrieved.
5: Highly relevant and
precise retrieval.

Fact-Checking Ensures generated
responses align with
retrieved
documents.

1: Responses are mostly
incorrect.
2: Frequent factual
errors.
3: Some factual errors,
mostly correct.
4: Rare factual errors.
5: Fully accurate
responses.

Context
Preservation

Maintains the
original meaning
and context of
regulatory clauses.

1: Context is often lost
or misinterpreted.
2: Frequent context
errors.
3: Maintain context with
some lapses.
4: Mostly accurate
context.
5: Perfectly maintains
context.

Comprehensiveness Regulation
Coverage

The model’s ability
to handle the entire
scope of applicable
regulations.

1: Major gaps in
coverage.
2: Limited coverage.
3: Moderate coverage
but with gaps.
4: Broad coverage with
minor gaps.
5: Fully comprehensive.

Handling
Complex Queries

Handles nuanced,
multi-part, or
detailed regulatory
questions
effectively.

1: Fails to address
complexity.
2: Struggles with
complexity.
3: Handles some
complexity but lacks
precision.
4: Handles most
complexities well.
5: Excels at addressing
complex queries.

Generic Query
Handling

Ability to provide
meaningful and
accurate responses
to broad or generic
regulatory
questions.

1: Provides vague or
irrelevant responses.
2: Struggles to address
generic questions.
3: Provides moderately
useful responses but
lacks depth.
4: Handles broad
queries well with minor
gaps.
5: Fully understands and
addresses generic
queries with insightful
responses.

Relevance Query
Understanding

Ability to
understand and
interpret user
queries accurately.

1: Often misinterprets
queries.
2: Frequent
misinterpretations.
3: Adequate
understanding but lacks
precision.
4: Strong understanding
with rare issues.
5: Consistently accurate
query interpretation.

Pertinence of
Outputs

Relevance of the
retrieved documents
and generated
responses.

1: Responses are mostly
irrelevant.
2: Frequently irrelevant
responses.
3: Somewhat relevant.
4: Mostly relevant.
5: Highly relevant.

Legal Consistency Compliance with
Regulations

Ensures generated
outputs align with
the latest
regulations.

1: Outputs are often
non-compliant.
2: Frequent compliance
issues.
3: Adequate compliance
with occasional lapses.
4: Mostly compliant.
5: Fully compliant with
regulations.

Consistency
Across Queries

Produces consistent
results for similar or
identical regulatory
queries.

1: Inconsistent across
queries.
2: Frequently
inconsistent.
3: Some inconsistencies
but generally
acceptable.
4: Mostly consistent.
5: Fully consistent.

Memory Context
Retention

The model's ability
to retain information
provided earlier in a
conversation.

1: Forgets context
frequently.
2: Retains context
inconsistently.
3: Retains context
moderately well but
may miss key details.
4: Retains context with
minor lapses.
5: Excellent retention of
context across
multi-turn
conversations.

Memory
Accuracy

How accurately the
model remembers
and applies past
context to new
queries.

1: Frequently recalls
inaccurate or irrelevant
information.
2: Often applies context
incorrectly.
3: Moderately accurate
recall.
4: Accurate recall with
rare issues.
5: Consistently accurate
and contextually
relevant recall.

10.​ References

[1]​ P. Lewis et al., “Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks,”

arXiv.org, Apr. 12, 2021. https://arxiv.org/abs/2005.11401

[2]​ Y. Han, C. Liu, and P. Wang, “A Comprehensive Survey on Vector Database: Storage and

Retrieval Technique, Challenge,” arXiv.org, Oct. 18, 2023.
https://arxiv.org/abs/2310.11703 ​

[3]​ hatchet-dev, “GitHub - hatchet-dev/hatchet: Run Background Tasks at Scale,” GitHub,
Apr. 15, 2025. https://github.com/hatchet-dev/hatchet (accessed May 02, 2025).​

[4]​ E. Rescorla and T. Dierks, “The Transport Layer Security (TLS) Protocol Version 1.2,”
RFC 5246, Aug. 2008. [Online]. Available: https://tools.ietf.org/html/rfc5246​

[5]​ ​​J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search with GPUs,”
arXiv:1702.08734 [cs], Feb. 2017, Available: https://arxiv.org/abs/1702.08734 ​

[6]​ Keycloak Team, Keycloak Documentation, “Securing Applications and Services Guide,”
[Online]. Available: https://www.keycloak.org/documentation.html​

[7]​ National Institute of Standards and Technology, “FIPS PUB 197: Advanced Encryption
Standard (AES),” U.S. Dept. of Commerce, 2023. [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf​

[8]​ D. Hardt, “The OAuth 2.0 Authorization Framework,” RFC 6749, Oct. 2012. [Online].
Available: https://tools.ietf.org/html/rfc6749​

[9]​ R. Friel, M. Belyi, and A. Sanyal, “Ragbench: Explainable Benchmark for
Retrieval-Augmented Generation Systems,” [Online]. Available:
https://arxiv.org/pdf/2407.11005.​

[10]​ P. Sbarski, S. Kroonenburg, and A. Bernert, “Serverless Architectures on AWS,” 2nd ed.
Shelter Island, NY: Manning Publications, 2020.​

[11]​ “Transformers,” huggingface.co. https://huggingface.co/docs/transformers/en/index ​

[12]​ “Faiss,” GitHub, Jan. 12, 2023. https://github.com/facebookresearch/faiss

https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2310.11703
https://github.com/hatchet-dev/hatchet
https://tools.ietf.org/html/rfc5246
https://arxiv.org/abs/1702.08734
https://www.keycloak.org/documentation.html
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://tools.ietf.org/html/rfc6749
https://arxiv.org/pdf/2407.11005
https://huggingface.co/docs/transformers/en/index
https://github.com/facebookresearch/faiss

	
	Final Report
	1.​Introduction
	1.1.​Purpose of the system
	1.2.​Design Goals
	1.2.1.​Accuracy
	1.2.2.​Reliability
	1.2.3.​Security
	1.2.4.​Supportability
	1.2.5.​Marketability
	1.2.6.​Scalability

	1.3.​Overview

	2.​Requirements Details
	2.1.​Functional Requirements
	2.1.1.​User Interface and Navigation
	2.1.2.​Document Processing and Search Capabilities
	2.1.3.​User Management System
	2.1.4.​Regulatory Document Management System
	2.1.5.​Search Results and Response Generation
	2.1.6.​Performance and Integration Requirements
	2.1.7.​Security and Compliance
	2.1.8.​Reporting and Analytics

	2.2.​Non-Functional Requirements
	2.2.1.​Usability
	2.2.2.​Reliability
	2.2.3.​Performance
	2.2.4.​Supportability
	2.2.5.​Scalability

	3.​Final Architecture and Design Details
	3.1.​ Overview
	3.2.​Subsystem decomposition
	3.3.​Persistent data management
	3.4.​Access control and security
	3.5.​Standards

	4.​Development/Implementation Details
	4.1.​Hatchet Workflow Orchestration
	4.2.​Web Client
	4.2.1.​View Layer
	4.2.2.​Service Layer
	4.2.3.​API Layer

	4.3.​Server
	4.3.1.​Controller Layer
	4.3.2.​Data Layer
	4.3.3.​IAM Layer

	4.4.​RAG​
	4.4.1.​Embedding Layer​
	4.4.2.​Query Layer
	4.4.3.​Data (Knowledge) Layer

	5.​Testing Details
	5.1.​Test Case Code Conventions
	5.1.1.​Test Types

	5.2.​Test Cases​
	5.3.​RAG Benchmarks
	5.3.1.​Testing the RAG model
	5.3.2.​Types of Questions in the Testbench
	5.3.3.​Generating a Testbench
	5.3.4.​Evaluation Metrics

	6.​Maintenance Plan and Details
	6.1.​Routine Monitoring and Health Checks
	6.2.​Software and Infrastructure Updates
	6.3.​Data Management and Integrity
	6.4.​Security Maintenance
	6.5.​Issue Resolution and Support
	6.6.​User Communication

	7.​Other Project Elements
	7.1.​Consideration of Various Factors in Engineering Design
	7.1.1.​Economic Factors​
	7.1.2.​Environmental Factors
	7.1.3.​Social Factors
	7.1.4.​Political Factors
	7.1.5.​Ethical Factors
	7.1.6.​Safety Factors
	7.1.7.​Sustainability Factors

	7.2.​Ethics and Professional Responsibilities
	7.2.1.​Upholding Data Privacy and Confidentiality
	7.2.2.​Ensuring Accuracy, Reliability, and Transparency
	7.2.3.​Addressing Bias and Promoting Fairness
	7.2.4.​Professional Accountability and Continuous Improvement

	7.3.​Judgements and Impacts to Various Contexts
	7.3.1.​Impact on Professional Workflows and Economic Contexts
	7.3.2.​Societal Impact and Information Accessibility
	7.3.3.​Engineering Judgements and Their Consequences
	7.3.4.​Broader Environmental and Global Contexts

	7.4.​Teamwork Details
	7.4.1.​Contributing and functioning effectively on the team
	7.4.2.​Helping creating a collaborative and inclusive environment
	7.4.3.​Taking lead role and sharing leadership on the team
	7.4.4.​Meeting objectives
	7.4.5.​New Knowledge Acquired and Applied

	8.​Conclusion and Future Work
	9.​Glossary
	9.1.​Definitions, acronyms, and abbreviations
	9.2.​Evaluation Criteria and Rating Scale

	
	
	10.​References

